1.Preparation and in vitro evaluation of platelet membrane biomimetic liposomes loaded with vincristine sulfate
Jing XIAO ; Xunyi YOU ; Along ZHANG ; Rui ZHONG ; Jiaxin LIU ; Ye CAO ; Hong WANG
Chinese Journal of Blood Transfusion 2025;38(5):652-659
Objective: To prepare platelet membrane biomimetic liposomes loaded with vincristine sulfate (VCR) for targeted delivery to tumor. Methods: Vincristine sulfate liposomes (LIPO) were prepared using the pH-gradient method, followed by the fusion of platelet membranes and subsequent drug loading to obtain platelet membrane biomimetic liposomes (PLM-LIPO). The particle size, polydispersity index (PDI), Zeta potential, and drug encapsulation efficiency (EE%) of both liposomes were characterized. The tumor-targeting capability was evaluated through in vitro cellular experiments and in vivo biodistribution studies. Results: The optimal preparation conditions for LIPO were determined as follows: DPPC-to-cholesterol molar ratio of 1∶1, internal aqueous phase of 0.3 M pH 4.0 citrate buffer, external aqueous phase of 1 M Na
HPO
solution, drug-to-lipid ratio of 1∶10, drug loading temperature of 60℃, and loading time of 10 minutes. The LIPO exhibited a mean particle size of (147.3±2.24) nm, PDI of 0.078±0.014, Zeta potential of (-3.54±0.75) mV, and EE% of 91.37±0.47. For PLM-LIPO, prepared via membrane fusion followed by drug loading, the mean particle size was (185.3±3.61) nm, PDI was 0.075±0.022, Zeta potential was (-18.91±1.54) mV, and EE% was 63.36±2.45. In the CD62P validation experiment, the fluorescence intensity of PLM-LIPO was five times higher than that of LIPO. In vitro cellular uptake experiments revealed that PLM-LIPO showed 1.3-fold and 1.2-fold higher uptake rates compared to LIPO at 6 h and 12 h, respectively. In vivo experiments demonstrated that 1h after administration, the accumulation of PLM-LIPO at tumor sites was 4-fold higher than that of LIPO and 6-7 times higher than that in healthy mice. Conclusion: The platelet membrane biomimetic liposomes loaded with vincristine sulfate were successfully developed. Both cellular uptake and tissue distribution studies confirmed the PLM-LIPO enhanced tumor-targeting capability.
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.Effects of different exercise interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats
Shujuan HU ; Ping CHENG ; Xiao ZHANG ; Yiting DING ; Xuan LIU ; Rui PU ; Xianwang WANG
Chinese Journal of Tissue Engineering Research 2025;29(2):269-278
BACKGROUND:Carboxylesterase 1 and inflammatory factors play a crucial role in regulating lipid metabolism and glucose homeostasis.However,the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats remain to be revealed. OBJECTIVE:To investigate the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats. METHODS:Thirty-two 8-week-old male Sprague-Dawley rats were randomly divided into normal control group(n=12)and modeling group(n=20)after 1 week of adaptive feeding.Rat models of type 2 diabetes mellitus were prepared by high-fat diet and single injection of streptozotocin.After successful modeling,the rats were randomly divided into diabetic control group(n=6),moderate-intensity exercise group(n=6)and high-intensity intermittent exercise group(n=6).The latter two groups were subjected to treadmill training at corresponding intensities,once a day,50 minutes each,and 5 days per week.Exercise intervention in each group was carried out for 6 weeks.After the intervention,ELISA was used to detect blood glucose and blood lipids of rats.The morphological changes of skeletal muscle were observed by hematoxylin-eosin staining.The mRNA expression levels of carboxylesterase 1 and inflammatory cytokines were detected by real-time quantitative PCR.The protein expression levels of carboxylesterase 1 and inflammatory cytokines were detected by western blot and immunofluorescence. RESULTS AND CONCLUSION:Compared with the normal control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,insulin resistance index in the diabetic control group were significantly increased(P<0.01),insulin activity was decreased(P<0.05),and the mRNA and protein levels of carboxylesterase 1,never in mitosis gene A related kinase 7(NEK7)and interleukin 18 in skeletal muscle tissue were upregulated(P<0.05).Compared with the diabetic control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,and insulin resistance index in the moderate-intensity exercise group and high-intensity intermittent exercise group were down-regulated(P<0.05),and insulin activity was increased(P<0.05).Moreover,compared with the diabetic control group,the mRNA level of NEK7 and the protein levels of carboxylesterase 1,NEK7 and interleukin 18 in skeletal muscle were decreased in the moderate-intensity exercise group(P<0.05),while the mRNA levels of carboxylesterase 1,NEK7,NOD-like receptor heat protein domain associated protein 3 and interleukin 18 and the protein levels of carboxylesterase 1 and interleukin 18 in skeletal muscle were downregulated in the high-intensity intermittent exercise group(P<0.05).Hematoxylin-eosin staining showed that compared with the diabetic control group,the cavities of myofibers in the moderate-intensity exercise group became smaller,the number of internal cavities was reduced,and the cellular structure tended to be more intact;the myocytes of rats in the high-intensity intermittent exercise group were loosely arranged,with irregular tissue shape and increased cavities in myofibers.To conclude,both moderate-intensity exercise and high-intensity intermittent exercise can reduce blood glucose,lipid,insulin resistance and carboxylesterase 1 levels in type 2 diabetic rats.Moderate-intensity exercise can significantly reduce the expression level of NEK7 protein in skeletal muscle,while high-intensity intermittent exercise can significantly reduce the expression level of interleukin 18 protein in skeletal muscle.In addition,the level of carboxylesterase 1 is closely related to the levels of NEK7 and interleukin 18.
5.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
6.The Role and Mechanism of Aerobic Exercise in Enhancing Insulin Sensitivity by Reducing Circulating Glutamate
Xiao-Rui XING ; Qin SUN ; Huan-Yu WANG ; Ruo-Bing FAN ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1373-1385
ObjectiveTo explore the role and potential mechanism of circulating glutamate in enhancing insulin sensitivity by aerobic exercise. This research may provide a novel strategy for preventing metabolic diseases through precise exercise interventions. MethodsTo investigate the effects of elevated circulating glutamate on insulin sensitivity and its potential mechanisms, 18 male C57BL/6 mice aged 6 to 8 weeks were randomly divided into 3 groups: a control group (C), a group receiving 500 mg/kg glutamate supplementation (M), and a group receiving 1 000 mg/kg glutamate supplementation (H). The intervention lasted for 12 weeks, with treatments administered 6 d per week. Following the intervention, an insulin tolerance test (ITT) and a glucose tolerance test (GTT) were conducted. Circulating glutamate levels were measured using a commercial kit, and the activity of the skeletal muscle InsR/IRS1/PI3K/AKT signaling pathway was analyzed via Western blot. To further investigate the role of circulating glutamate in enhancing insulin sensitivity through aerobic exercise, 30 male C57BL/6 mice were randomly assigned to 3 groups: a control group (CS), an exercise intervention group (ES), and an exercise combined with glutamate supplementation group (EG). The ES group underwent treadmill-based aerobic exercise, while the EG group received glutamate supplementation at a dosage of 1 000 mg/kg in addition to aerobic exercise. The intervention lasted for 10 weeks, with sessions occurring 6 d per week, and the same procedures were followed afterward. To further elucidate the mechanism by which glutamate modulates the InsR/IRS1/PI3K/AKT signaling pathway, C2C12 myotubes were initially subjected to graded glutamate treatment (0, 0.5, 1, 3, 5, 10 mmol/L) to determine the optimal concentration for cellular intervention. Subsequently, the cells were divided into 3 groups: a control group (C), a glutamate intervention group (G), and a glutamate combined with MK801 (an NMDA receptor antagonist) intervention group (GK). The G group was treated with 5 mmol/L glutamate, while the GK group received 50 μmol/L MK801 in addition to 5 mmol/L glutamate. After 24 h of intervention, the activity of the InsR/IRS1/PI3K/AKT signaling pathway was analyzed using Western blot. ResultsCompared to the mice in group C, the circulating glutamate levels, the area under curve (AUC) of ITT, and the AUC of GTT in the mice of group H were significantly increased. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle were significantly downregulated. Compared to the mice in group CS, the circulating glutamate levels, the AUC of ITT, and the AUC of GTT in the mice of group ES were significantly reduced. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle of group ES mice were significantly upregulated. There were no significant changes observed in the mice of group EG. Compared to the cells in group 0 mmol/L, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in cells of group 5 mmol/L were significantly downregulated. Compared to the cells in group C, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in the cells of group G were significantly downregulated. No significant changes were observed in the cells of group GK. ConclusionLong-term aerobic exercise can improve insulin sensitivity by lowering circulating levels of glutamate. This effect may be associated with the upregulation of the InsR/IRS1/AKT signaling pathway activity in skeletal muscle. Furthermore, glutamate can weaken the activity of the InsR/IRS1/PI3K/AKT signaling pathway in skeletal muscle, potentially by binding to NMDAR expressed in skeletal muscle.
7.Drug Delivery Systems for Pancreatic Cancers Treatment
Wan-Rui SHI ; Li-Gang CUI ; Xiao-Long LIANG
Progress in Biochemistry and Biophysics 2025;52(7):1745-1756
Pancreatic cancers (PCs) is a common malignant tumor with poor prognosis in the digestive system. Its main treatment methods include surgery, radiotherapy, chemotherapy, and targeted therapy. The early diagnosis rate of hidden onset of PCs is low, and most patients have already lost the opportunity to undergo surgery when diagnosed with PCs. Chemotherapy is still the main treatment for advanced PCs, but the use of chemotherapy drugs in PCs can easily lead to drug resistance. The most significant feature that distinguishes PCs from other tumors is its rich and dense matrix, which not only hinders drug penetration but also impedes the infiltration of immune cells. The above reasons have led to a very low survival rate of PCs patients. Therefore, drug delivery systems are very important in the diagnosis and treatment of PCs. They can improve drug delivery, enhance biological barrier penetration, reduce side effects, and combine multiple treatment methods. Therefore, the treatment prospects of PCs are very broad. Currently, drug delivery systems widely applied in PCs primarily include nanodrug delivery systems, tumor microenvironment-targeted drug delivery system, immunotherapy drug delivery system, gene therapy drug delivery system, and combination therapy drug delivery system that synergize multiple therapeutic modalities. Emerging drug delivery systems (DDSs) have revolutionized PCs treatment by addressing these challenges through multiple mechanisms. Nanoformulations improve drug solubility, prolong circulation time, and reduce systemic toxicity via passive/active targeting. Smart DDSs responsive to PCs-specific stimuli enable extracellular matrix degradation, tumor-associated fibroblasts reprogramming, and vascular normalization to enhance drug accessibility. Last but not least, carrier systems loaded with myeloid-derived suppressor cell inhibitors or T cell activators can reverse immunosuppression and potentiate immunotherapy efficacy. Advanced platforms co-deliver chemotherapeutics with immunomodulators, gene-editing tools, or sonodynamic agents to achieve synergistic antitumor effects. These platforms aim to address critical challenges in PCs treatment, such as enhancing drug bioavailability, overcoming stromal barriers, reprogramming immunosuppressive niches, and achieving multi-mechanistic antitumor effects. This article provides a systematic summary and prospective analysis of the current development status, latest cutting-edge advances, opportunities, and challenges of the above-mentioned drug delivery systems in the field of PCs therapy.
8.Application of case-based learning combined with seminars in integrated medical imaging teaching
Maoping LI ; Rui LIAO ; Hua PANG ; Lü FAJIN ; Xiaoling HUANG ; Chufan XIAO
Chinese Journal of Medical Education Research 2024;23(5):656-661
Objective:In order to improve medical undergraduates' ability to interpret medical images and clinical application competencies, this study aimed to explore the effects of case-based learning (CBL) combined with seminars for integrated medical imaging teaching as well as its application value.Methods:We assigned 40 medical undergraduates of grade 2016 of Chongqing Medical University to learn imaging of liver diseases using either a traditional teaching model (control group, n=20) or the combined teaching model (experimental group, n=20), in the form of classroom teaching in our hospital. The teaching effects were evaluated through a theoretical assessment, image reading assessment, and questionnaire survey. SPSS 23.0 software was used for statistical analysis. Continuous data were compared using the t test, and categorical data were compared using the chi-square test. Results:The total theoretical score and total image reading score of the experimental group were (76.35±8.63) and (79.80±10.60), respectively, which were significantly higher than those of the control group ( P<0.05). Specifically, for the experimental group, the scores of theoretical analysis and comprehensive application were (22.85±3.63) and (22.15±2.92), respectively; the scores of image interpretation and report writing were (48.55±6.81) and (31.25±4.15), respectively; the scores for medium questions and hard questions in the image reading test were (24.85±3.12) and (22.50±2.91), respectively; and the pass rate and excellence rate for image reading were 100.00% and 50.00%, respectively, all significantly higher than those of the control group ( P<0.05). The degree of satisfaction with teaching in the experimental group was significantly higher than that of the control group ( P<0.05). In terms of improving learning desire, independent learning ability, innovation and expansion ability, literature search ability, communication and collaboration ability, and image interpretation ability, the experimental group showed significantly higher self-evaluated scores than the control group ( P<0.05). Conclusions:The CBL+seminar model can effectively improve students' academic performance in theoretical and image reading assessments, strengthen their ability to analyze and solve difficult problems, increase their enthusiasm and initiative in learning, and improve their comprehensive quality and image interpretation competency, which is worth promotion and application.
9.Pregnancy and the disease recurrence of patients previously treated for differentiated thyroid cancer: A systematic review and meta analysis
Rui SHAN ; Xin LI ; Ming TAO ; Wucai XIAO ; Jing CHEN ; Fang MEI ; Shibing SONG ; Bangkai SUN ; Chunhui YUAN ; Zheng LIU
Chinese Medical Journal 2024;137(5):547-555
Background::Differentiated thyroid cancer (DTC) is commonly diagnosed in women of child-bearing age, but whether pregnancy influences the prognosis of DTC remains controversial. This study aimed to summarize existing evidence regarding the association of pregnancy with recurrence risk in patients previously treated for DTC.Methods::We searched PubMed, Embase, Web of Science, Cochrane, and Scopus based on the prespecified protocol registered at PROSPERO (CRD42022367896). After study selection, two researchers independently extracted data from the included studies. For quantitative data synthesis, we used random-effects meta-analysis models to pool the proportion of recurrence (for pregnant women only) and odds ratio (OR; comparing the risk of recurrence between the pregnancy group and the nonpregnancy group), respectively. Then we conducted subgroup analyses to explore whether risk of recurrence differed by response to therapy status or duration of follow-up time. We also assessed quality of the included studies.Results::A total of ten studies were included. The sample size ranged from 8 to 235, with participants’ age at pregnancy or delivery ranging from 28 to 35 years. The follow-up time varied from 0.1 to 36.0 years. The pooled proportion of recurrence in all pregnant patients was 0.13 (95% confidence intervals [CI]: 0.06-0.25; I2: 0.58). Among six included studies reporting response to therapy status before pregnancy, we observed a trend for increasingly higher risk of recurrence from excellent, indeterminate, and biochemically incomplete to structurally incomplete response to therapy ( Ptrend <0.05). The pooled risk of recurrence in the pregnancy group showed no evidence of a significant difference from that in the nonpregnancy group (OR: 0.75; 95% CI: 0.45-1.23; I2: 0). The difference in follow-up time (below/above five years) was not associated with either the proportion of recurrence in all pregnant patients ( P >0.05) or the OR of recurrence in studies with a comparison group ( P >0.05). Two included studies that focused on patients with distant metastasis also did not show a significant difference in disease recurrence between pregnancy and nonpregnancy groups (OR: 0.51 [95% CI: 0.14-1.87; I2: 59%]). Conclusion::In general, pregnancy appears to have a minimal association with the disease recurrence of DTC with initial treatment. Clinicians should pay more attention to progression of DTC among pregnant women with biochemical and/or structural persistence.Registration::PROSPERO, https://www.crd.york.ac.uk/PROSPERO/; No. CRD42022367896.
10.Reducing language barriers, promoting information absorption, and communication using fanyi
Difei WANG ; Guannan CHEN ; Lin LI ; Shaodi WEN ; Zijing XIE ; Xiao LUO ; Li ZHAN ; Shuangbin XU ; Junrui LI ; Rui WANG ; Qianwen WANG ; Guangchuang YU
Chinese Medical Journal 2024;137(16):1950-1956
Interpreting genes of interest is essential for identifying molecular mechanisms, but acquiring such information typically involves tedious manual retrieval. To streamline this process, the fanyi package offers tools to retrieve gene information from sources like National Center for Biotechnology Information (NCBI), significantly enhancing accessibility. Additionally, understanding the latest research advancements and sharing achievements are crucial for junior researchers. However, language barriers often restrict knowledge absorption and career development. To address these challenges, we developed the fanyi package, which leverages artificial intelligence (AI)-driven online translation services to accurately translate among multiple languages. This dual functionality allows researchers to quickly capture and comprehend information, promotes a multilingual environment, and fosters innovation in academic community. Meanwhile, the translation functions are versatile and applicable beyond biomedicine research to other domains as well. The fanyi package is freely available at https://github.com/YuLab-SMU/fanyi.

Result Analysis
Print
Save
E-mail