1.Action mechanism of Coptidis Rhizoma Alkaloids against cerebral ischemia based on transcriptome sequencing
Liangliang TIAN ; Rui ZHOU ; Guangzhao CAO ; Jingjing ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(19):4161-4171
BACKGROUND:Coptis chinensis can clear heat,dry dampness,relieve fire,and detoxify.Coptis chinensis and its components have a significant protective effect on cerebral ischemia.The action mechanism of anti-cerebral ischemia of Coptidis Rhizoma Alkaloids was explored based on network pharmacology and transcriptome sequencing. OBJECTIVE:Based on the study of the protective effects of Coptidis Rhizoma Alkaloids on cerebral ischemia of rats,the action mechanism of Coptidis Rhizoma Alkaloids intervention in cerebral ischemia was investigated by using network pharmacology and transcriptome sequencing technology. METHODS:The SD rats were randomly divided into sham operation group,ischemia/reperfusion group,positive drug group,and Coptidis Rhizoma Alkaloids group.The ischemia/reperfusion model of middle cerebral artery occlusion was prepared by modified thread method in the latter three groups.No thread was inserted and the other operations were the same in the sham operation group.TTC staining,Longa 5 neurological deficient score,hematoxylin and eosin staining,and Nissl staining were used to evaluate the protective effect of Coptidis Rhizoma Alkaloids on ischemia/reperfusion model rats.Transcriptome sequencing was performed on the brain tissues of rats in sham operation group,ischemia/reperfusion group,and Coptidis Rhizoma Alkaloids group.Differentially expressed genes,gene Ontology analysis,Kyoto encyclopedia of genes and genomes analysis,and Correlation Analysis of Transcriptomics and Network Pharmacology were used to elucidate the effect of Coptidis Rhizoma Alkaloids on cerebral ischemia.Finally,ELISA and immunofluorescence staining were used to verify the key targets of Coptidis Rhizoma Alkaloids in the intervention of cerebral ischemia. RESULTS AND CONCLUSION:(1)Coptidis Rhizoma Alkaloids treatment decreased the Longa 5 neurological deficit scores and cerebral infarction area of ischemia/reperfusion model rats,increased the number of neurons and Nissl bodies.(2)Differentially expressed gene after Coptidis Rhizoma Alkaloids treatment analyzed by functional enrichment analysis of gene ontology includes biological processes such as inflammatory reaction and positive regulation of mitogen-activated protein kinase cascade.The enrichment analysis of Kyoto gene and genome encyclopedia analysis pathway mainly involves interleukin-17 signaling pathway,neuroactive ligand-receptor interaction,cyclic adenosine-3′,5′-mconophosphate signaling pathway and so on.(3)Analysis of transcriptomics showed that the main genes regulated by Coptidis Rhizoma Alkaloids were prostaglandin endoperoxide synthase 2,brain derived neurotrophic factor,and transient receptor potential A1.(4)Network pharmacology analysis revealed that nine components in Coptidis Rhizoma Alkaloids may exert their effects by associating with 87 targets related to prostaglandin endoperoxide synthase 2,brain derived neurotrophic factor,and transient receptor potential A1.(5)ELISA and immunofluorescence staining results further confirmed that Coptidis Rhizoma Alkaloids regulated the expression of prostaglandin endoperoxide synthase 2,brain derived neurotrophic factor,and transient receptor potential A1.(6)It is concluded that Coptidis Rhizoma Alkaloids treatment can significantly improve the injury in ischemia/reperfusion model rats,possibly by regulating prostaglandin endoperoxide synthase 2,brain derived neurotrophic factor,and transient receptor potential A1.
2.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
3.Role of ATG12 in The Development of Disease
Wei LIU ; Rui TIAN ; Ce-Fan ZHOU ; Jing-Feng TANG
Progress in Biochemistry and Biophysics 2025;52(5):1081-1098
Autophagy, a highly conserved cellular degradation mechanism, maintains intracellular homeostasis by removing damaged organelles and abnormal proteins. Its dysregulation is closely associated with various diseases. Autophagy-related protein 12 (ATG12), a core member of the ubiquitin-like protein family, covalently binds to ATG5 through a ubiquitin-like conjugation system to form the ATG12-ATG5-ATG16L1 complex. This complex directly regulates the formation and maturation of autophagosomes, making ATG12 a key molecule in the initiation of autophagy. Recent studies have revealed that ATG12 functions extend far beyond the classical autophagy context. It promotes apoptosis by binding to anti-apoptotic proteins of the Bcl-2 family (e.g., Bcl-2 and Mcl-1) and enhances host antiviral immunity by regulating the NF-κB and interferon signaling pathways. Moreover, ATG12 deficiency can lead to mitochondrial biogenesis impairment, energy metabolism disorders, and substrate-dependent metabolic shifts, underscoring its pivotal role in cellular metabolic homeostasis. At the disease level, dysregulation of ATG12 expression is closely linked to tumorigenesis and cancer progression. By modulating the dynamic balance between autophagy and apoptosis, ATG12 influences cancer cell proliferation, metastasis, and chemoresistance. Notably, ATG12 is abnormally overexpressed in multiple cancers, including breast, liver, and gastric cancer, highlighting its potential as a therapeutic target. Furthermore, in neurodegenerative diseases such as Parkinson’s disease, ATG12 mitigates protein toxicity by enhancing mitochondrial autophagy. In cardiovascular diseases, it alleviates ischemia-reperfusion injury by regulating cardiomyocyte autophagy and apoptosis, demonstrating its broad regulatory role across various pathological conditions. Genetic studies further underscore the clinical significance of ATG12. Polymorphisms in the ATG12 gene (e.g., rs26537 and rs26538) have been significantly associated with the risk of head and neck squamous cell carcinoma, hepatocellular carcinoma, and atrophic gastritis. Notably, the risk allele of rs26537 enhances ATG12 promoter activity, leading to its overexpression and promoting tumorigenesis. These findings provide a molecular basis for individualized risk assessment and targeted interventions based on ATG12 genotype. Despite significant progress, many aspects of ATG12 biology remain unclear. The precise regulatory mechanisms of its post-translational modifications (e.g., ubiquitination and acetylation) are yet to be fully elucidated. Additionally, the molecular pathways underlying its non-canonical functions, such as metabolic regulation and immune modulation, require further investigation. Moreover, the functional heterogeneity of ATG12 in different tumor microenvironments and its role in drug resistance warrant in-depth exploration. Future research should integrate advanced technologies such as cryo-electron microscopy, single-cell sequencing, and organoid models to decipher the intricate regulatory network of ATG12. Additionally, developing small-molecule inhibitors or gene-editing tools targeting its protein interaction interfaces (e.g., the ATG12-ATG3 binding domain) may help overcome current therapeutic challenges. Through interdisciplinary collaboration and clinical translation, ATG12 holds promise as a next-generation molecular target for precision intervention in autophagy-related diseases. This review summarizes the structure and function of ATG12, its role in autophagy initiation, its physiological functions, and its involvement in disease pathogenesis. Furthermore, it discusses future research directions and potential challenges, emphasizing ATG12’s potential as a biomarker and therapeutic target in autophagy-related diseases.
4.Effect of Rhei Radix et Rhizoma Before and After Steaming with Wine on Intestinal Flora and Immune Environment in Constipation Model Mice
Yaya BAI ; Rui TIAN ; Yajun SHI ; Chongbo ZHAO ; Jing SUN ; Li ZHANG ; Yonggang YAN ; Yuping TANG ; Qiao ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):192-199
ObjectiveTo study on the different therapeutic effects and potential mechanisms of Rhei Radix et Rhizoma(RH) before and after steaming with wine on constipation model mice. MethodsFifty-four male ICR mice were randomly divided into control group, model group, lactulose group(1.5 mg·kg-1), high, medium and low dose groups of RH and RH steaming with wine(PRH)(8, 4, 1 g·kg-1). Except for the control group, the constipation model was replicated by gavage of loperamide hydrochloride(6 mg·kg-1) in the other groups. After 2 weeks of modeling, each administration group was gavaged with the corresponding dose of drug solution, and the control and model groups were given an equal volume of normal saline, 1 time/d for 2 consecutive weeks. After administration, the feces were collected for 16S rRNA sequencing, the levels of gastrin(GAS), motilin(MTL), interleukin-6(IL-6), γ-interferon(IFN-γ) in the colonic tissue were detected by enzyme-linked immunosorbent assay(ELISA), the histopathological changes of colon were observed by hematoxylin-eosin(HE) staining, flow cytometry was used to detect the proportion changes of CD4+, CD8+ and regulatory T cell(Treg) in peripheral blood. ResultsCompared with the control group, the model group showed significantly decrease in fecal number in 24 h, fecal quality and fecal water rate(P<0.01), the colon was seen to have necrotic shedding of mucosal epithelium, localized intestinal glands in the lamina propria were degenerated, necrotic and atrophied, a few lymphocytes were seen to infiltrate in the necrotic area in a scattered manner, the contents of GAS and MTL, the proportions of CD4+, CD8+ and Treg were significantly reduced(P<0.01), the contents of IL-6 and IFN-γ were significantly elevated(P<0.05, P<0.01). Compared with the model group, the fecal number in 24 h, fecal quality and fecal water rate of high-dose groups of RH and PRH were significantly increased(P<0.05, P<0.01), the pathological damage of the colon was alleviated to varying degrees, the contents of GAS, MTL, IL-6 and IFN-γ were significantly regressed(P<0.05, P<0.01), and the proportions of CD4+ and CD8+ were significantly increased(P<0.01), although the proportion of Treg showed an upward trend, there was no significant difference. In addition, the results of intestinal flora showed that the number of amplicon sequence variant(ASV) and Alpha diversity were decreased in the model group compared with the control group, and there was a significant difference in Beta diversity, with a decrease in the relative abundance of Lactobacillus and an increase in the relative abundances of Bacillus and Helicobacter. Compared with the model group, the ASV number and Alpha diversity were increased in the high-dose groups of RH and PRH, and there was a trend of regression of Beta diversity to the control group, the relative abundance of Lactobacillus increased, and the relative abundances of Bacillus and Helicobacter decreased. ConclusionRH and PRH can improve dysbacteriosis, promote immune system activation, inhibit the release of inflammatory factors for enhancing the gastrointestinal function, which may be one of the potential mechanisms of their therapeutic effect on constipation.
5.Effects of total flavonoids of Dracocephalum moldavica on apoptosis of H9c2 cells induced by OGD/R injury and endoplasmic reticulum stress.
Tian WANG ; Di-Wei LIU ; Tong-Ye WANG ; Xing-Yu ZHANG ; Jian-Guo XING ; Rui-Fang ZHENG
China Journal of Chinese Materia Medica 2025;50(5):1321-1330
This study investigated the effects of total flavonoids of Dracocephalum moldavica(TFDM) on apoptosis in rat H9c2 cells induced by endoplasmic reticulum stress(ERS) established by oxygen-glucose deprivation and reoxygenation(OGD/R) injury and tunicamycin(TM), and explored the potential mechanisms. After successful modeling, the following groups were set in this experiment: control group, model(OGD/R or TM) group, and TFDM low-, medium-, and high-dose groups(12.5, 25, and 50 μg·mL~(-1)). The OGD/R injury model was constructed in vitro. Cell proliferation was assessed using the cell counting kit-8(CCK-8) method. The levels of lactate dehydrogenase(LDH) and creatine kinase MB isoenzyme(CKMB) in the cell supernatant were detected. Western blot was used to assess the expression of ERS-related proteins, including glucose regulatory protein 78(GRP78), C/EBP homologous protein(CHOP), activating transcription factor 6(ATF6), and apoptotic proteins B-cell lymphoma 2(Bcl-2) and Bcl-2-associated X protein(Bax). Apoptosis was detected using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) method. In the TM-induced ERS model, Western blot was used to measure the expression of ERS pathway-related proteins GRP78, CHOP, inositol-requiring enzyme 1(IRE1), X-box binding protein 1(XBP1), protein kinase RNA-like endoplasmic reticulum kinase(PERK), eukaryotic initiation factor 2α(eIF2α), ATF6, p-ATF6, and apoptotic proteins Bcl-2, Bax, cysteinyl aspartate specific proteinase-12(caspase-12), and cleaved caspase-12. Gene expression of GRP78, CHOP, PERK, and ATF6 was detected by real-time fluorescence quantitative PCR(RT-qPCR). Apoptosis was again detected using the TUNEL method. The results showed that in the OGD/R model, compared with the control group, the levels of LDH and CKMB in the cell supernatant were significantly increased in the OGD/R group. Compared with the OGD/R group, the levels of LDH and CKMB in the TFDM group were significantly reduced. Western blot results revealed that compared with the control group, the expression of ERS-related proteins and Bax in the OGD/R group was significantly increased, while the expression of Bcl-2 was significantly decreased. Compared with the OGD/R group, the expression of ERS-related proteins and Bax in the TFDM groups was significantly reduced, and the expression of Bcl-2 was significantly increased. TUNEL assay showed that apoptosis was significantly decreased after TFDM treatment. In the TM-induced ERS experiment, compared with the control group, the expression of ERS-related genes, ERS-related proteins, and apoptotic proteins in the TM group was significantly increased, while the expression of Bcl-2 was significantly decreased. Compared with the TM group, the expression of ERS-related genes, ERS-related proteins, and apoptotic proteins in the TFDM group was significantly reduced, and the expression of Bcl-2 was significantly increased. These results suggest that ERS exists in the OGD/R-injured H9c2 cell model, and TFDM can effectively inhibit ERS-induced apoptosis. The mechanism may be related to the downregulation of ERS pathway-related proteins and apoptotic proteins.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Apoptosis/drug effects*
;
Rats
;
Flavonoids/pharmacology*
;
Glucose/metabolism*
;
Cell Line
;
Lamiaceae/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Oxygen/metabolism*
;
Reperfusion Injury/physiopathology*
;
Myocytes, Cardiac/cytology*
6.Two new taraxerane triterpenoids from mastic.
Zhi-Qiang ZHAO ; Xue-Rui AN ; Tian-Zhi LI ; Ting HE ; Hao-Kun HOU ; Wei LIU ; Tao YUAN
China Journal of Chinese Materia Medica 2025;50(13):3723-3743
Three taraxerane nortriterpenoids were isolated from mastic by using various modern chromatographic separation techniques. They were identified as(5R,8R,9R,10S,11S,12R,13S,17R,18R)-28-norlupa-11,12-epoxy-14-taraxerene-3,16-dione(1),(5R,8R,9R,10S,11S,12R,13S,17S,18S)-17-hydroxy-28-norlupa-11,12-epoxy-14-taraxerene-3-one(2), and(5R,8R,9R,10R,11S,12R,13R,14S,17S,18S)-14,17-epoxy-28-norlupa-11,12-oxidotaraxerone(3) through the high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), infrared(IR), ultraviolet(UV), nuclear magnetic resonance(NMR), and single-crystal X-ray diffraction techniques as well as comparison with literature data. Compounds 1-3 were C-28 nortriterpenoids and isolated from mastic for the first time, and compounds 1-2 were new ones. In the model for RAW264.7 cell anti-inflammation induced by lipopolysaccharide(LPS), compound 1 demonstrates an inhibitory effect on nitric oxide(NO) [IC_(50)=(13.38±0.68) μmol·L~(-1)], comparable to the activity of the positive control dexamethasone [IC_(50)=(14.59±1.49) μmol·L~(-1)]. Compounds 2 and 3 exhibit weaker inhibitory effects, with IC_(50) values of(24.17±2.56) and(22.25±2.84) μmol·L~(-1), respectively.
Animals
;
Mice
;
Triterpenes/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
;
Mastic Resin/chemistry*
;
Nitric Oxide
;
Molecular Structure
;
Macrophages/immunology*
;
RAW 264.7 Cells
7.Fibroblast activation protein targeting radiopharmaceuticals: From drug design to clinical translation.
Yuxuan WU ; Xingkai WANG ; Xiaona SUN ; Xin GAO ; Siqi ZHANG ; Jieting SHEN ; Hao TIAN ; Xueyao CHEN ; Hongyi HUANG ; Shuo JIANG ; Boyang ZHANG ; Yingzi ZHANG ; Minzi LU ; Hailong ZHANG ; Zhicheng SUN ; Ruping LIU ; Hong ZHANG ; Ming-Rong ZHANG ; Kuan HU ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(9):4511-4542
The activation proteins released by fibroblasts in the tumor microenvironment regulate tumor growth, migration, and treatment response, thereby influencing tumor progression and therapeutic outcomes. Owing to the proliferation and metastasis of tumors, fibroblast activation protein (FAP) is typically highly expressed in the tumor stroma, whereas it is nearly absent in adult normal tissues and benign lesions, making it an attractive target for precision medicine. Radiolabeled agents targeting FAP have the potential for targeted cancer diagnosis and therapy. This comprehensive review aims to describe the evolution of FAPI-based radiopharmaceuticals and their structural optimization. Within its scope, this review summarizes the advances in the use of radiolabeled small molecule inhibitors for tumor imaging and therapy as well as the modification strategies for FAPIs, combined with insights from structure-activity relationships and clinical studies, providing a valuable perspective for radiopharmaceutical clinical development and application.
8.A dual-targeting peptide-drug conjugate based on CXCR4 and FOLR1 inhibits triple-negative breast cancer.
Kun WANG ; Cong WANG ; Hange YANG ; Gong CHEN ; Ke WANG ; Peihong JI ; Xudong SUN ; Xuegong FAN ; Jie MA ; Zhencun CUI ; Xingkai WANG ; Hao TIAN ; Dengfu WU ; Lu WANG ; Zhimin WANG ; Jiangyan LIU ; Juan YI ; Kuan HU ; Hailong ZHANG ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(10):4995-5009
Triple-negative breast cancer is therapeutically challenging due to the low expression of tumor markers and 'cold' tumor immunosuppressive microenvironment. Here, we present a dual-targeting peptide-drug conjugate (PDC) for tumor inhibition. Our PDC efficiently and selectively delivers cytotoxic Monomethyl Auristatin E (MMAE) into tumor cells via C-X-C chemokine receptor type 4 (CXCR4) and folate receptor 1 (FOLR1) for synergistic inhibition of growth and metastasis. Our results show that the dual-targeting PDC has potent antitumor activity in cultured human cells and several murine transplanted tumor models without apparent toxicity. The combination of dual-targeting PDC and radiotherapy modulates the tumor immunosuppressive microenvironment by increasing CD8+ T cell infiltration and attenuating the proportion of myeloid-derived suppressor and regulatory T cells. Therefore, our dual-targeting PDC represents a promising new strategy for cancer therapy that rebalances the immune system and promotes tumor regression.
9.Advances in Lipid-Lowering Therapy for Homozygous Familial Hypercholesterolemia
Rui LI ; Zhuang TIAN ; Shuyang ZHANG
JOURNAL OF RARE DISEASES 2025;4(3):361-369
Homozygous familial hypercholesterolemia (HoFH) is an extremely rare and severe hereditary lipid metabolism disorder, characterized by markedly elevated levels of plasma low-density lipoprotein cholesterol (LDL-C), significantly increasing the risk of atherosclerotic cardiovascular diseases. Among traditional lipid-lowering therapies, the combination of statins and ezetimibe is the basic treatment approach, but its efficacy is limited. In recent years, notable progress has been made in lipid-lowering therapy for HoFH. New drugs such as proprotein convertase subtilisin/kexin type 9 inhibitors and angiopoietin-like protein 3 inhibitors have demonstrated favorable LDL-C-lowering effects and play an active role in treatment. Lipoprotein apheresis can rapidly reduce LDL-C levels and has become an important adjuvant treatment modality. Although approaches like gene therapy and liver transplantation face many challenges, they offer hope for radical cure. Further research is still needed to optimize treatment strategies and regimens for more effective blood lipid management in patients with HoFH.
10.LI Rui's experience in acupoint selection and clinical cases in treatment with bloodletting therapy.
Shuting ZHUANG ; Rui LI ; Haoru DUAN ; Shaoyang LIU ; Tian TIAN
Chinese Acupuncture & Moxibustion 2025;45(4):505-509
The paper introduces the experience of Professor LI Rui in treatment of diseases with bloodletting therapy. Regarding acupoint selection, the main acupoints are selected from the meridians containing excessive blood based on the identification of pathogenesis, and the back-shu points of the foot-taiyang bladder meridian are predominant. The acupoints (e.g. Geshu [BL17], Xuehai [SP10] and Weizhong [BL40]) acting on blood regulations are frequently selected, and the acupoints from the governor vessel (e.g. Dazhui [GV14], Zhiyang [GV9] and Yaoyangguan [GV3]) are specially used for regulating yang qi. Besides, the five-shu points and local points are combined in the prescriptions. This paper expounds the connotation of bloodletting therapy, explores the basis of acupoint selection and clinical application characteristics, and analyzes the clinical cases, so as to provide the approaches to acupoint selection for the clinical application of bloodletting therapy.
Humans
;
Acupuncture Points
;
Acupuncture Therapy
;
Bloodletting
;
Meridians

Result Analysis
Print
Save
E-mail