1.Safety and efficacy of the AMPA receptor antagonist perampanel for tremors: A systematic review
Rafael Vincent M. Manalo ; Joseph Rem C. Dela cruz ; Paul Matthew Pasco
Acta Medica Philippina 2025;59(Early Access 2025):1-8
BACKGROUND
Perampanel is an antagonist of the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. It is currently FDA-approved to treat focal and generalized tonic-clonic seizures in epilepsy, but recent evidence suggests its potential in treating severe and refractory tremors.
OBJECTIVESTo determine the safety and efficacy of perampanel in treating tremors via a systematic review of existing literature.
METHODSWe performed a literature search on five large databases (PubMed, Cochrane, Google Scholar, HERDIN, and Scopus) for clinical studies within the last 10 years and screened a total of 1,539 unique articles for full assessment. We filtered out papers on epilepsy as well as hypokinetic diseases and assessed nine articles for quality assessment and review.
RESULTSA total of four case reports/series, four open-label trials, and one randomized controlled trial were assessed to be of fair to good quality. All trials showed that low-dose perampanel (2-4 mg/day) was safe and well-tolerated with minor adverse events reported by participants. A net benefit from baseline was observed in patients with essential and primary orthostatic tremors. However, current evidence is weak because the trials employed a non-randomized before-after study design with a small sample size and significant dropout rates.
CONCLUSIONLow-dose perampanel at 2-4 mg/day shows promising potential in treating refractory tremors and myoclonus in recent clinical studies, but current evidence is weak or anecdotal. Additional randomized controlled trials are needed to determine the conclusive benefit of perampanel for hyperkinesia.
Human ; Perampanel ; Receptors, Ampa ; Dystonia ; Tremor ; Myoclonus ; Hyperkinesia ; Hyperkinesis
2.Safety and efficacy of the AMPA receptor antagonist perampanel for tremors: A systematic review
Rafael Vincent M. Manalo ; Joseph Rem C. Dela cruz ; Paul Matthew Pasco
Acta Medica Philippina 2025;59(13):74-81
BACKGROUND
Perampanel is an antagonist of the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. It is currently FDA-approved to treat focal and generalized tonic-clonic seizures in epilepsy, but recent evidence suggests its potential in treating severe and refractory tremors.
OBJECTIVESTo determine the safety and efficacy of perampanel in treating tremors via a systematic review of existing literature.
METHODSWe performed a literature search on five large databases (PubMed, Cochrane, Google Scholar, HERDIN, and Scopus) for clinical studies within the last 10 years and screened a total of 1,539 unique articles for full assessment. We filtered out papers on epilepsy as well as hypokinetic diseases and assessed nine articles for quality assessment and review.
RESULTSA total of four case reports/series, four open-label trials, and one randomized controlled trial were assessed to be of fair to good quality. All trials showed that low-dose perampanel (2-4 mg/day) was safe and well-tolerated with minor adverse events reported by participants. A net benefit from baseline was observed in patients with essential and primary orthostatic tremors. However, current evidence is weak because the trials employed a non-randomized before-after study design with a small sample size and significant dropout rates.
CONCLUSIONLow-dose perampanel at 2-4 mg/day shows promising potential in treating refractory tremors and myoclonus in recent clinical studies, but current evidence is weak or anecdotal. Additional randomized controlled trials are needed to determine the conclusive benefit of perampanel for hyperkinesia.
Human ; Perampanel ; Receptors, Ampa ; Dystonia ; Tremor ; Myoclonus ; Hyperkinesia ; Hyperkinesis
3.Expert consensus on the diagnosis and treatment of advanced non-small cell lung cancer with EGFR PACC mutations (2025 edition).
Chinese Journal of Oncology 2025;47(9):811-829
Lung cancer is the malignancy with the highest incidence and mortality burden globally, ranking first in both morbidity and mortality among all types of malignant tumors. Pathologically, lung cancer is classified into non-small cell lung cancer (NSCLC) and small cell lung cancer, with NSCLC accounting for approximately 85% of cases. Due to the often subtle or nonspecific clinical manifestations in early-stage disease, many patients are diagnosed at a locally advanced or metastatic stage, where treatment options are limited and prognosis remains poor. Therefore, molecular targeted therapy focusing on driver genes has become a key strategy to improve the survival outcomes of patients with advanced NSCLC. The epidermal growth factor receptor (EGFR) is one of the most common driver genes in NSCLC. While EGFR mutations occur in approximately 12% of advanced NSCLC patients globally, the incidence rises to 55.9% in Chinese patients. Among EGFR mutations, P-loop and αC-helix compressing (PACC) mutations account for about 12.5%. Currently, EGFR tyrosine kinase inhibitors (TKIs) have become the first-line standard treatment for advanced NSCLC patients with classical EGFR mutations, with efficacy well-established through clinical studies and real-world evidence. However, with rapid advancements in NSCLC precision medicine and deeper exploration of the EGFR mutation spectrum, EGFR PACC mutations have emerged as a key clinical focus. The structural characteristics of these mutations lead to significant variability in responses to EGFR TKIs, leaving therapeutic options still limited, while detection challenges persist due to the sensitivity constraints of current testing technologies, driving increasing demand for improved diagnostic and treatment approaches. The current clinical evidence primarily stems from retrospective analyses and small-scale exploratory studies, while prospective, large-scale, high-level evidence-based medical research specifically targeting this mutation subtype remains notably insufficient. This evidence gap has consequently led to the absence of standardized guidelines or expert consensus regarding optimal treatment strategies for advanced NSCLC with EGFR PACC mutations. As a clinical consensus specifically addressing EGFR PACC-mutant NSCLC, this document provides a comprehensive framework encompassing the clinical rationale for EGFR PACC mutation testing, therapeutic strategies for advanced-stage disease, management of treatment-related adverse events, and follow-up protocols. The consensus underscores the pivotal role of EGFR PACC mutation detection in precision medicine implementation while offering evidence-based recommendations to guide personalized therapeutic decision-making. By establishing clear clinical pathways encompassing molecular testing, therapeutic intervention, and long-term monitoring for EGFR PACC-mutant NSCLC, this consensus aims to meaningfully improve patient survival outcomes while serving as a robust, evidence-based foundation for developing personalized clinical management approaches.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
ErbB Receptors/antagonists & inhibitors*
;
Mutation
;
Lung Neoplasms/pathology*
;
Protein Kinase Inhibitors/therapeutic use*
;
Molecular Targeted Therapy
;
Consensus
4.Effects of moxibustion at "Xinshu" (BL15) and "Feishu" (BL13) on myocardial transferrin receptor 1 and ferroptosis suppressor protein 1 in chronic heart failure rats.
Bing GAO ; Pan LIU ; Lan LI ; Tiantian GONG ; Ling ZHU ; Liya LI ; Ran XIA ; Jing WANG
Chinese Acupuncture & Moxibustion 2025;45(6):781-790
OBJECTIVE:
To observe the effects of moxibustion at "Xinshu" (BL15) and "Feishu" (BL13) on myocardial transferrin receptor 1 (TfR1), ferroptosis suppressor protein 1 (FSP1), atrial natriuretic peptide (ANP), and typeⅠcollagen myocardial collagen fibers (CollagenⅠ) in rats with chronic heart failure (CHF), and to explore the mechanism of moxibustion for ameliorating myocardial fibrosis and improving cardiac function in CHF.
METHODS:
Fifty SD rats were randomly divided into a normal group (n=10) and a modeling group (n=40). The CHF model was established in the modeling group by ligating the left anterior descending coronary artery. After successful modeling, the rats were randomly divided into a model group (n=9), a moxibustion group (n=8), a rapamycin (RAPA) group (n=9), and a moxibustion+RAPA group (n=9). In the moxibustion group, moxibustion was delivered at bilateral "Feishu"(BL13) and "Xinshu" (BL15), 15 min at each point in each intervention, once daily, for 4 consecutive weeks. In the RAPA group, RAPA solution was administered intraperitoneally at a dose of 1 mg/kg, once daily for 4 consecutive weeks. In the moxibustion+RAPA group, RAPA solution was administered intraperitoneally after moxibustion. Ejection fraction (EF) and left ventricular fractional shortening (FS) were measured after modeling and intervention. After intervention, morphology of cardiac muscle was observed using HE staining and Masson's trichrome staining. Total iron content in myocardial tissue was detected using a colorimetric method. Western blot and qPCR were adopted to detect the protein and mRNA expression of TfR1, FSP1, ANP, and CollagenⅠ in myocardial tissue.
RESULTS:
Compared with the normal group, the EF and FS values decreased (P<0.01); necrosis, edema, degeneration, and arrangement disorder were presented in cardiomyocytes; inflammatory cells were obviously infiltrated, the structure of myocardial fibers was disarranged, the collagen fibers were obviously deposited and fibrosis increased (P<0.01); the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue were elevated (P<0.01), while the protein and mRNA expression of FSP1 were reduced (P<0.01) in the model group. Compared with the model group, the moxibustion group showed that EF and FS increased (P<0.01); myocardial cell morphology was improved, and myocardial fibrosis was alleviated (P<0.01); the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue decreased (P<0.01), while the protein and mRNA expression of FSP1 increased (P<0.01, P<0.05). Compared with the model group, the myocardial fibrosis was increased (P<0.05); the total iron content and the protein and mRNA expression of TfR1, ANP, CollagenⅠ in myocardial tissue were increased (P<0.01), while protein and mRNA expression of FSP1 decreased (P<0.01) in the RAPA group. When compared with the RAPA group and the moxibustion + RAPA group, EF and FS were elevated (P<0.01, P<0.05); myocardial cells were improved in morphology, the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue decreased (P<0.01), while protein and mRNA expression of FSP1 increased (P<0.01) in the moxibustion group. In comparison with the moxibustion + RAPA group, the RAPA group showed the decrease in EF and FS (P<0.01), the worsened myocardial fibrosis (P<0.01), the increase in the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue (P<0.01), and the decrease in the protein and mRNA expression of FSP1 (P<0.01).
CONCLUSION
Moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) can slow down the process of myocardial fibrosis and improve cardiac function in CHF rats. The mechanism of moxibustion may be related to inhibiting ferroptosis through regulating autophagy.
Animals
;
Rats
;
Heart Failure/physiopathology*
;
Moxibustion
;
Rats, Sprague-Dawley
;
Male
;
Receptors, Transferrin/genetics*
;
Myocardium/metabolism*
;
Acupuncture Points
;
Humans
;
Chronic Disease/therapy*
;
Antigens, CD/metabolism*
5.Regulatory effects of moxibustion at "Guanyuan" (CV4) on extragonadal estrogen and estrogen receptors in ovariectomized rats.
Qingchen ZHOU ; Xinyan GAO ; Kun LIU ; Bing ZHU
Chinese Acupuncture & Moxibustion 2025;45(12):1770-1776
OBJECTIVE:
To observe the regulatory effects of moxibustion at "Guanyuan" (CV4) on the synthesis of extragonadal estradiol (E2) and the expression of estrogen receptor (ER) in ovariectomized rats, aiming to explore the mechanism of moxibustion treatment for perimenopausal syndrome.
METHODS:
Forty-eight SD female rats of SPF grade were randomly divided into a sham-operation group, a model group and a moxibustion group, with 16 rats in each group. The model group and the moxibustion group underwent bilateral ovariectomy by the back incision method. Ten days after surgery, moxibustion was applied at "Guanyuan" (CV4) in the moxibustion group, 30 min each time, once a day for 10 days. After intervention, in the 3 groups, the body mass and uterus weight were measured; the serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH) and E2, as well as the skin and hypothalamus levels of E2 were detected by ELISA; the mRNA expression of aromatase (P450arom) in the skin and hypothalamus was detected by real-time PCR; the expression of ERα and ERβ in the hypothalamus, skin, and uterus was observed by immunofluorescence staining, and the density of positive cells was calculated using the Aipathwell digital pathology image analysis software.
RESULTS:
Compared with the sham-operation group, the body mass was increased (P<0.01) and the uterus weight was decreased (P<0.001) in the model group. Compared with the model group, the body mass was decreased in the moxibustion group (P<0.01). Compared with the sham-operation group, in the model group, the serum, hypothalamus and skin levels of E2 were decreased (P<0.01, P<0.05), while the serum levels of FSH and LH were increased (P<0.01); the expression of ERα and ERβ in the skin, hypothalamus and uterus was decreased (P<0.05, P<0.001). Compared with the model group, in the moxibustion group, the serum levels of E2 and LH, as well as the hypothalamus and skin levels of E2 were increased (P<0.05, P<0.01); the mRNA expression of P450arom, as well as the expression of ERα and ERβ in the skin and hypothalamus were increased (P<0.05).
CONCLUSION
Moxibustion at "Guanyuan" (CV4) reduces the body mass of ovariectomized rats by enhancing the synthesis of extragonadal E2 and increasing the expression of ER in the skin and hypothalamus, yet it does not alleviate uterine atrophy.
Animals
;
Female
;
Moxibustion
;
Rats
;
Ovariectomy
;
Acupuncture Points
;
Rats, Sprague-Dawley
;
Humans
;
Receptors, Estrogen/genetics*
;
Estrogens/metabolism*
;
Estradiol/metabolism*
;
Hypothalamus/metabolism*
;
Follicle Stimulating Hormone/blood*
;
Aromatase/genetics*
;
Luteinizing Hormone/blood*
;
Skin/metabolism*
6.Vagus nerve modulates acute-on-chronic liver failure progression via CXCL9.
Li WU ; Jie LI ; Ju ZOU ; Daolin TANG ; Ruochan CHEN
Chinese Medical Journal 2025;138(9):1103-1115
BACKGROUND:
Hepatic inflammatory cell accumulation and the subsequent systematic inflammation drive acute-on-chronic liver failure (ACLF) development. Previous studies showed that the vagus nerve exerts anti-inflammatory activity in many inflammatory diseases. Here, we aimed to identify the key molecule mediating the inflammatory process in ACLF and reveal the neuroimmune communication arising from the vagus nerve and immunological disorders of ACLF.
METHODS:
Proteomic analysis was performed and validated in ACLF model mice or patients, and intervention animal experiments were conducted using neutralizing antibodies. PNU-282987 (acetylcholine receptor agonist) and vagotomy were applied for perturbing vagus nerve activity. Single-cell RNA sequencing (scRNA-seq), flow cytometry, immunohistochemical and immunofluorescence staining, and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technology were used for in vivo or in vitro mechanistic studies.
RESULTS:
The unbiased proteomics identified C-X-C motif chemokine ligand 9 (CXCL9) as the greatest differential protein in the livers of mice with ACLF and its relation to the systematic inflammation and mortality were confirmed in patients with ACLF. Interventions on CXCL9 and its receptor C-X-C chemokine receptor 3 (CXCR3) improved liver injury and decreased mortality of ACLF mice, which were related to the suppressing of hepatic immune cells' accumulation and activation. Vagus nerve stimulation attenuated while vagotomy aggravated the expression of CXCL9 and the severity of ACLF. Blocking CXCL9 and CXCR3 ameliorated liver inflammation and increased ACLF-associated mortality in ACLF mice with vagotomy. scRNA-seq revealed that hepatic macrophages served as the major source of CXCL9 in ACLF and were validated by immunofluorescence staining and flow cytometry analysis. Notably, the expression of CXCL9 in macrophages was modulated by vagus nerve-mediated cholinergic signaling.
CONCLUSIONS
Our novel findings highlighted that the neuroimmune communication of the vagus nerve-macrophage-CXCL9 axis contributed to ACLF development. These results provided evidence for neuromodulation as a promising approach for preventing and treating ACLF.
Animals
;
Mice
;
Chemokine CXCL9/metabolism*
;
Vagus Nerve/physiology*
;
Acute-On-Chronic Liver Failure/metabolism*
;
Humans
;
Male
;
Mice, Inbred C57BL
;
Proteomics
;
Flow Cytometry
;
Receptors, CXCR3/metabolism*
7.Precision therapy targeting CAMK2 to overcome resistance to EGFR inhibitors in FAT1 -mutated oral squamous cell carcinoma.
Yumeng LIN ; Yibo HUANG ; Bowen YANG ; You ZHANG ; Ning JI ; Jing LI ; Yu ZHOU ; Ying-Qiang SHEN ; Qianming CHEN
Chinese Medical Journal 2025;138(15):1853-1865
BACKGROUND:
Oral squamous cell carcinoma (OSCC) is a prevalent type of cancer with a high mortality rate in its late stages. One of the major challenges in OSCC treatment is the resistance to epidermal growth factor receptor (EGFR) inhibitors. Therefore, it is imperative to elucidate the mechanism underlying drug resistance and develop appropriate precision therapy strategies to enhance clinical efficacy.
METHODS:
To evaluate the efficacy of the combination of the Ca 2+ /calmodulin-dependent protein kinase II (CAMK2) inhibitor KN93 and EGFR inhibitors, we performed in vitro and in vivo experiments using two FAT atypical cadherin 1 ( FAT1 )-deficient (SCC9 and SCC25) and two FAT1 wild-type (SCC47 and HN12) OSCC cell lines. We assessed the effects of EGFR inhibitors (afatinib or cetuximab), KN93, or their combination on the malignant phenotype of OSCC in vivo and in vitro . The alterations in protein expression levels of members of the EGFR signaling pathway and SRY-box transcription factor 2 (SOX2) were analyzed. Changes in the yes-associated protein 1 (YAP1) protein were characterized. Moreover, we analyzed mitochondrial dysfunction. Besides, the effects of combination therapy on mitochondrial dynamics were also evaluated.
RESULTS:
OSCC with FAT1 mutations exhibited resistance to EGFR inhibitors treatment. The combination of KN93 and EGFR inhibitors significantly inhibited the proliferation, survival, and migration of FAT1 -mutated OSCC cells and suppressed tumor growth in vivo . Mechanistically, combination therapy enhanced the therapeutic sensitivity of FAT1 -mutated OSCC cells to EGFR inhibitors by modulating the EGFR pathway and downregulated tumor stemness-related proteins. Furthermore, combination therapy induced reactive oxygen species (ROS)-mediated mitochondrial dysfunction and disrupted mitochondrial dynamics, ultimately resulting in tumor suppression.
CONCLUSION
Combination therapy with EGFR inhibitors and KN93 could be a novel precision therapeutic strategy and a potential clinical solution for EGFR-resistant OSCC patients with FAT1 mutations.
Humans
;
ErbB Receptors/metabolism*
;
Mouth Neoplasms/metabolism*
;
Cell Line, Tumor
;
Animals
;
Drug Resistance, Neoplasm/genetics*
;
Cadherins/metabolism*
;
Carcinoma, Squamous Cell/metabolism*
;
Mice
;
Mutation/genetics*
;
Mice, Nude
;
Protein Kinase Inhibitors/therapeutic use*
;
Cetuximab/pharmacology*
;
Afatinib/therapeutic use*
;
Cell Proliferation/drug effects*
;
Signal Transduction/drug effects*
8.Efficacy and safety of avatrombopag in the treatment of thrombocytopenia after umbilical cord blood transplantation.
Aijie HUANG ; Guangyu SUN ; Baolin TANG ; Yongsheng HAN ; Xiang WAN ; Wen YAO ; Kaidi SONG ; Yaxin CHENG ; Weiwei WU ; Meijuan TU ; Yue WU ; Tianzhong PAN ; Xiaoyu ZHU
Chinese Medical Journal 2025;138(9):1072-1083
BACKGROUND:
Delayed platelet engraftment is a common complication after umbilical cord blood transplantation (UCBT), and there is no standard therapy. Avatrombopag (AVA) is a second-generation thrombopoietin (TPO) receptor agonist (TPO-RA) that has shown efficacy in immune thrombocytopenia (ITP). However, few reports have focused on its efficacy in patients diagnosed with thrombocytopenia after allogeneic hematopoietic stem cell transplantation (allo-HSCT).
METHODS:
We conducted a retrospective study at the First Affiliated Hospital of the University of Science and Technology of China to evaluate the efficacy of AVA as a first-line TPO-RA in 65 patients after UCBT; these patients were compared with 118 historical controls. Response rates, platelet counts, megakaryocyte counts in bone marrow, bleeding events, adverse events and survival rates were evaluated in this study. Platelet reconstitution differences were compared between different medication groups. Multivariable analysis was used to explore the independent beneficial factors for platelet implantation.
RESULTS:
Fifty-two patients were given AVA within 30 days post-UCBT, and the treatment was continued for more than 7 days to promote platelet engraftment (AVA group); the other 13 patients were given AVA for secondary failure of platelet recovery (SFPR group). The median time to platelet engraftment was shorter in the AVA group than in the historical control group (32.5 days vs . 38.0 days, Z = 2.095, P = 0.036). Among the 52 patients in the AVA group, 46 achieved an overall response (OR) (88.5%), and the cumulative incidence of OR was 91.9%. Patients treated with AVA only had a greater 60-day cumulative incidence of platelet engraftment than patients treated with recombinant human thrombopoietin (rhTPO) only or rhTPO combined with AVA (95.2% vs . 84.5% vs . 80.6%, P <0.001). Patients suffering from SFPR had a slightly better cumulative incidence of OR (100%, P = 0.104). Patients who initiated AVA treatment within 14 days post-UCBT had a better 60-day cumulative incidence of platelet engraftment than did those who received AVA after 14 days post-UCBT (96.6% vs . 73.9%, P = 0.003).
CONCLUSION
Compared with those in the historical control group, our results indicate that AVA could effectively promote platelet engraftment and recovery after UCBT, especially when used in the early period (≤14 days post-UCBT).
Humans
;
Female
;
Male
;
Thrombocytopenia/etiology*
;
Adult
;
Retrospective Studies
;
Cord Blood Stem Cell Transplantation/adverse effects*
;
Middle Aged
;
Adolescent
;
Young Adult
;
Thiazoles/adverse effects*
;
Platelet Count
;
Receptors, Thrombopoietin/agonists*
;
Child
;
Thiophenes
9.Involvement of interferon γ-producing mast cells in immune responses against melanocytes in vitiligo requires Mas-related G protein-coupled receptor X2 activation.
Zhikai LIAO ; Yunzhu YAO ; Bingqi DONG ; Yue LE ; Longfei LUO ; Fang MIAO ; Shan JIANG ; Tiechi LEI
Chinese Medical Journal 2025;138(11):1367-1378
BACKGROUND:
Increasing evidence indicates that oxidative stress and interferon γ (IFNγ)-driven cellular immune responses are responsible for the pathogenesis of vitiligo. However, the connection between oxidative stress and the local production of IFNγ in early vitiligo remains unexplored. The aim of this study was to identify the mechanism underlying the production of IFNγ by mast cells and its impact on vitiligo pathogenesis.
METHODS:
Skin specimens from the central, marginal, and perilesional skin areas of active vitiligo lesions were collected to characterize changes of mast cells, CD8 + T cells, and IFNγ-producing cells. Cell supernatants from hydrogen peroxide (H 2 O 2 )-treated keratinocytes (KCs) were harvested to measure levels of soluble stem cell factor (sSCF) and matrix metalloproteinase (MMP)-9. A murine vitiligo model was established using Mas-related G protein-coupled receptor-B2 (MrgB2, mouse ortholog of human MrgX2) conditional knockout (MrgB2 -/- ) mice to investigate IFNγ production and inflammatory cell infiltrations in tail skin following the challenge with tyrosinase-related protein (Tyrp)-2 180 peptide. Potential interactions between the Tyrp-2 180 peptide and MrgX2 were predicted using molecular docking. The siRNAs targeting MrgX2 and the calcineurin inhibitor FK506 were also used to examine the signaling pathways involved in mast cell activation.
RESULTS:
IFNγ-producing mast cells were closely aligned with the recruitment of CD8 + T cells in the early phase of vitiligo skin. sSCF released by KCs through stress-enhanced MMP9-dependent proteolytic cleavage recruited mast cells into sites of inflamed skin (Perilesion vs . lesion, 13.00 ± 4.00/high-power fields [HPF] vs . 26.60 ± 5.72/HPF, P <0.05). Moreover, IFNγ-producing mast cells were also observed in mouse tail skin following challenge with Tyrp-2 180 (0 h vs . 48 h post-recall, 0/HPF vs . 3.80 ± 1.92/HPF, P <0.05). The IFNγ + mast cell and CD8 + T cell counts were lower in the skin of MrgB2 -/- mice than in those of wild-type mice (WT vs . KO 48 h post-recall, 4.20 ± 0.84/HPF vs . 0.80 ± 0.84/HPF, P <0.05).
CONCLUSION
Mast cells activated by MrgX2 serve as a local IFNγ producer that bridges between innate and adaptive immune responses against MCs in early vitiligo. Targeting MrgX2-mediated mast cell activation may represent a new strategy for treating vitiligo.
Vitiligo/metabolism*
;
Mast Cells/immunology*
;
Animals
;
Interferon-gamma/metabolism*
;
Mice
;
Humans
;
Melanocytes/metabolism*
;
Receptors, G-Protein-Coupled/genetics*
;
Mice, Knockout
;
Mice, Inbred C57BL
;
Male
;
Female
;
Matrix Metalloproteinase 9/metabolism*
;
Stem Cell Factor/metabolism*
10.Engineering and targeting potential of CAR NK cells in colorectal cancer.
Muhammad Babar KHAWAR ; Ali AFZAL ; Shuangshuang DONG ; Yue SI ; Haibo SUN
Chinese Medical Journal 2025;138(13):1529-1539
Colorectal cancer (CRC), a major global health concern, necessitates innovative treatments. Chimeric antigen receptor (CAR) T cells have shown promises, yet they grapple with challenges. The spotlight pivots to the rising heroes: CAR natural killer (NK) cells, offering advantages such as higher safety profiles, cost-effectiveness, and efficacy against solid tumors. Nevertheless, the specific mechanisms underlying CAR NK cell trafficking and their interplay within the complex tumor microenvironment require further in-depth exploration. Herein, we provide insights into the design and engineering of CAR NK cells, antigen targets in CRC, and success in overcoming resistance mechanisms with an emphasis on the potential for clinical trials.
Colorectal Neoplasms/immunology*
;
Humans
;
Killer Cells, Natural/metabolism*
;
Receptors, Chimeric Antigen/genetics*
;
Immunotherapy, Adoptive/methods*
;
Tumor Microenvironment/immunology*
;
Animals


Result Analysis
Print
Save
E-mail