1.Knockdown of interferon-γ inducible protein 30 (IFI30) inhibits the proliferation, invasion and migration of human glioma U251 cells by activating STAT1 and promotes their apoptosis.
Jingjing YE ; Wenqin XU ; Tianbing CHEN
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):33-42
Objective To establish U251 cells with inhibited expression of interferon-γ inducible protein 30 (IFI30), and to investigate the effect of IFI30 on cell biological function as well as its underlying mechanism. Methods Three knockdown sequences which target IFI30 were designed online and 3 small interfering RNAs (siRNA) were synthesized. After transfection, the inhibition efficiency was detected by real-time quantitative PCR. The siRNA sequence with the highest inhibition efficiency was selected to create short hairpin RNA (shRNA) plasmids. The recombinant plasmids and packaging plasmids were co-transfected into HEK293T cells to prepare lentivirus. The glioma U251 cells were transfected with lentivirus, and the positive cells were screened by puromycin. CCK-8 assay, 5-ethyl-2'-deoxyuridine (EdU) and colony formation assays were used to analyze cell proliferation; the flow cytometry was used to analyze cell cycle and apoptosis; the TranswellTM assay was used to detect cell invasion; the wound-healing assay was employed to detect cell migration, and western blot analysis to detect the protein expresison of cyclin D1, B-cell lymphoma factor 2 (Bcl2), epithelial cadherin (E-cadherin), neural cadherin (N-cadherin), signal transducer and activator of transcription 1 (STAT1). Results The sequence which effectively target IFI30 was screened and U251 cell line capable of inhibiting the IFI30 expression was successfully established. When IFI30 expression was knocked down, the proliferation of U251 cells was inhibited, along with increased ratio of cells in the phase G0/G1, the decreased phase S, the increased rate of cell apoptosis. The cell invasion and migration capabilities was also reduced. The decreased expression of cyclin D1, Bcl2 and N-cadherin were observed in U251 cells, and the expression of E-cadherin and the phosphorylation of STAT1 were found increased. Conclusion Knockdown of IFI30 inhibits the proliferation, invasion and migration of human glioma cell U251 and promotes its apoptosis by activating STAT1.
Humans
;
Cyclin D1/genetics*
;
HEK293 Cells
;
Interferon-gamma
;
RNA, Small Interfering
;
Apoptosis/genetics*
;
Cadherins
;
Cell Proliferation/genetics*
;
Glioma/genetics*
;
Proto-Oncogene Proteins c-bcl-2
;
Oxidoreductases Acting on Sulfur Group Donors
;
STAT1 Transcription Factor/genetics*
2.Circular RNA ame_circ_000115 regulates expression of genes in larval gusts of Apis mellifera ligustica stressed by Ascosphaera apis.
Yaping YE ; Jie WANG ; Jiaxin ZHANG ; Kaiyao ZHANG ; Xiaoyu GU ; Yutong YAO ; Zhongmin REN ; Yang ZHANG ; Dafu CHEN ; Rui GUO
Chinese Journal of Biotechnology 2023;39(1):217-230
Circular RNAs (circRNAs) are a new class of non-coding RNAs, which have been confirmed to regulate insect gene expression and immune response through multiple manners such as competing endogenous RNA (ceRNA) regulatory network. Currently, function of circRNA in honey bee immune response remains unclear. In this study, PCR and Sanger sequencing were performed to validate the back splicing (BS) site of ame_circ_000115 (in short ac115). RT-qPCR was used to detect the expression profile of ac115 in larval guts of Apis mellifera ligustica stressed by Ascosphaera apis. Dual-luciferase reporter gene assay was conducted to verify the binding relationship between ac115 and ame-miR-13b. Interference of ac115 in larval guts was carried out by feeding specific siRNA, followed by determination of the effect of ac115 interference on expression of six genes relevant to host immune response. The results confirmed the existence of BS site within ac115. Compared with the un-inoculated group, the expression of ac115 in 4-day-old larval gut of the A. apis-inoculated group was up-regulated with extreme significance (P < 0.000 1), while that in 5- and 6-day-old larval guts were significantly up-regulated (P < 0.05). The brightness of specific band for ac115 in 4-, 5- and 6-day-old larval guts of the siRNA-circ_000115-fed group gradually became weak, whereas that of the siRNA-scrambl-fed group was pretty high without obvious variation. Compared with that of the siRNA-scramble-fed group, the expression of ac115 in 4-day-old larval gut of the siRNA-circ_000115-fed group was significantly down-regulated (P < 0.05), whereas that of the 5- and 6-day-old larval guts were down-regulated with extreme significance (P < 0.001). Ame-miR-13b was truly existed and expressed in A. m. ligustica larval guts, and there was true binding relationship between ac115 and ame-miR-13b. Compared with that of the siRNA-scramble-fed group, the expression of antimicrobial peptide genes hymenoptaecin and abaecin in 6-day-old larval gut of the siRNA-circ_000115-fed group was significantly up-regulated (P < 0.05), while that of ecdysone receptor (Ecr) was down-regulated with extreme significance (P < 0.01). These results indicate that ac115 is truly expressed in A. m. ligustica larval guts, BS site truly exists within ac115, and effective interference of ac115 in A. m. ligustica larval guts can be achieved via feeding siRNA. Moreover, ac115 potentially regulates Ecr expression through adsorption of ame-miR-13b and expression of hymenoptaecin and abaecin using a non-ceRNA manner, further participating in host stress-response.
Bees/genetics*
;
Animals
;
Larva/metabolism*
;
RNA, Circular/genetics*
;
RNA, Small Interfering/genetics*
;
MicroRNAs/genetics*
3.Hepatitis B virus X protein promotes podocyte pyroptosis in hepatitis B virus-associated glomerulonephritis by down-regulating microRNA -223 targeting NLRP3 inflammasome.
Ya Ni YU ; Yue Qi CHEN ; Bao Shuang LI ; Xiao Qian YANG ; Mo Xuan FENG ; Wei JIANG
Chinese Journal of Hepatology 2023;39(1):20-31
Objective: To investigate the potential function and related mechanism of microRNA-223 (miRNA-223) in the podocyte pyroptosis of hepatitis B virus (HBV)-associated glomerulonephritis induced by HBV X protein (HBx). Methods: HBx-overexpressing lentivirus was transfected into human renal podocytes to mimic the pathogenesis of HBV-GN. Real-time fluorescence quantitative PCR and Western blotting experiments were used to detect the mRNA and protein expression of pyroptosis-related proteins [nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1], and inflammatory factors (interleukin-1β and interleukin-18), respectively.TUNEL staining and flow cytometry were used to detect the number of pyroptosis cells. Immunofluorescence staining was used to detect the expression of podocytes biomarkers desmin and nephrin; Hoechst 33342 staining was used to observe the morphological and quantitative changes of podocyte nuclei. Enzyme-linked immunosorbent assay was used to measure caspase-1 activity. The dual luciferase reporter gene assay was used to verify the downstream target of miRNA-223. Podocytes were divided into the following nine groups: control group (no special treatment), empty plasmid group (transfected with empty plasmid), HBx overexpression group (transfected with HBx overexpression lentivirus), HBx overexpression+miRNA-223 mimic group (transfected with HBx overexpression lentivirus and miRNA-223 mimic), HBx overexpression+miRNA-223 inhibitor group (transfected with HBx overexpression lentivirus and miRNA-223 inhibitor), HBx overexpression+miRNA-223 mimic+NLRP3 group (transfected with HBx overexpression lentivirus, miRNA-223 mimic and NLRP3 overexpression plasmid), HBx overexpression+miRNA-223 mimic+ NLRP3 siRNA group (transfected with HBx overexpression lentivirus, miRNA-223 mimic and NLRP3 siRNA), HBx overexpression+miRNA-223 inhibitor+NLRP3 group (transfected with HBx overexpression lentivirus, miRNA-223 inhibitor and NLRP3 overexpression plasmid), HBx overexpression+miRNA-223 inhibitor+NLRP3 siRNA group (transfected with HBx overexpression lentivirus, miRNA-223 inhibitor and NLRP3 siRNA). Results: miRNA-223 was down-regulated in HBx overexpression group compared with the control group (P < 0.05). TUNEL and immunofluorescence staining showed that NLRP3 knockdown attenuated podocyte injury and pyroptosis induced by HBx overexpression (P < 0.05). Dual luciferase reporter gene assay demonstrated that NLRP3 was one of the downstream targets of miRNA-223. Rescue experiments revealed that NLRP3 overexpression weakened the protective effect of miRNA-223 in podocyte injury (P < 0.05). The addition of miRNA-223 mimic and NLRP3 siRNA decreased the expression of NLRP3 inflammasome and cytokines, and reduced the number of pyroptosis cells induced by HBx overexpression (all P < 0.05); The addition of miRNA-223 inhibitor and NLRP3 overexpression plasmid significantly increased the expression of NLRP3 inflammasome and cytokines, caspase-1 activity, and the number of pyroptosis cells (all P < 0.05). Conclusion: HBx may promote podocyte pyroptosis of HBV-GN via downregulating miRNA-223 targeting NLRP3 inflammasome, suggesting that miRNA-223 is expected to be a potential target for the treatment of HBV-GN.
Humans
;
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pyroptosis
;
Podocytes/metabolism*
;
Hepatitis B virus/genetics*
;
Caspase 1/metabolism*
;
Cytokines/metabolism*
;
Carrier Proteins/metabolism*
;
MicroRNAs/genetics*
;
Glomerulonephritis/metabolism*
;
RNA, Small Interfering
4.Effect and Mechanism of Atorvastatin on Reversing Drug Resistance in Leukemia by Regulating Glycolysis through PTEN/mTOR Pathway.
Journal of Experimental Hematology 2023;31(1):38-44
OBJECTIVE:
To investigate the influence and mechanism of atorvastatin on glycolysis of adriamycin resistant acute promyelocytic leukemia (APL) cell line HL-60/ADM.
METHODS:
HL-60/ADM cells in logarithmic growth phase were treated with different concentrations of atorvastatin, then the cell proliferation activity was measured by CCK-8 assay, the apoptosis was detected by flow cytometry, the glycolytic activity was checked by glucose consumption test, and the protein expressions of PTEN, p-mTOR, PKM2, HK2, P-gp and MRP1 were detected by Western blot. After transfection of PTEN-siRNA into HL-60/ADM cells, the effects of low expression of PTEN on atorvastatin regulating the behaviors of apoptosis and glycolytic metabolism in HL-60/ADM cells were further detected.
RESULTS:
CCK-8 results showed that atorvastatin could inhibit the proliferation of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.872, r=0.936), and the proliferation activity was inhibited most significantly when treated with 10 μmol/L atorvastatin for 24 h, which was decreased to (32.3±2.18)%. Flow cytometry results showed that atorvastatin induced the apoptosis of HL-60/ADM cells in a concentration-dependent manner (r=0.796), and the apoptosis was induced most notably when treated with 10 μmol/L atorvastatin for 24 h, which reached to (48.78±2.95)%. The results of glucose consumption test showed that atorvastatin significantly inhibited the glycolytic activity of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.915, r=0.748), and this inhibition was most strikingly when treated with 10 μmol/L atorvastatin for 24 h, reducing the relative glucose consumption to (46.53±1.71)%. Western blot indicated that the expressions of p-mTOR, PKM2, HK2, P-gp and MRP1 protein were decreased in a concentration-dependent manner (r=0.737, r=0.695, r=0.829, r=0.781, r=0.632), while the expression of PTEN protein was increased in a concentration-dependent manner (r=0.531), when treated with different concentrations of atorvastatin for 24 h. After PTEN-siRNA transfected into HL-60/ADM cells, it showed that low expression of PTEN had weakened the promoting effect of atorvastatin on apoptosis and inhibitory effect on glycolysis and multidrug resistance.
CONCLUSION
Atorvastatin can inhibit the proliferation, glycolysis, and induce apoptosis of HL-60/ADM cells. It may be related to the mechanism of increasing the expression of PTEN, inhibiting mTOR activation, and decreasing the expressions of PKM2 and HK2, thus reverse drug resistance.
Humans
;
Atorvastatin/pharmacology*
;
PTEN Phosphohydrolase/pharmacology*
;
Sincalide/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Leukemia, Promyelocytic, Acute/drug therapy*
;
Doxorubicin/pharmacology*
;
Apoptosis
;
RNA, Small Interfering/pharmacology*
;
Glycolysis
;
Glucose/therapeutic use*
;
Cell Proliferation
5.The Molecular Mechanism of LncRNA HOTAIR Regulating the Proliferation, Invasion and Migration of Lymphoma Cells through Target Gene miR-20a-5p.
A-Ming LEI ; Ping-An ZHU ; Li-Mei FU ; Xin LIAO ; Gu-Li AZI ; Ping ZHU
Journal of Experimental Hematology 2023;31(1):89-95
OBJECTIVE:
To investigate the effects of lncRNA HOTAIR on the proliferation, invasion and migration of lymphoma cells through target gene miR-20a-5p and its molecular mechanism.
METHODS:
After synthesizing HOTAIR siRNA and siRNA NC plasmids, they were transfected into lymphoma Raji cells, respectively. The expression of HOTAIR mRNA was detected by RT-qPCR. The proliferation, invasion and migration of lymphoma Raji cells were detected by CCK-8 assay, Transwell assay and cell scratch healing assay, respectively. The target gene of lncRNA HOTAIR was predicted by miRcode software, and the relationship between HOTAIR and target gene was analyzed by dual luciferase assay. After synthesis of miR-20a-5p inhibitor and inhibitor NC, Raji cells were transiently transfected. The expression of miR-20a-5p was detected by RT-qPCR, and the effects of down-regulation of miR-20a-5p on the proliferation, invasion and migration of Raji cells were analyzed. The overexpression plasmid of lncRNA HOTAIR and miR-20a-5p mimics were transfected into Raji cells simultaneously to analyze the proliferation, invasion and migration ability of Raji cells. After overexpression or down-regulation of miR-20a-5p, the expression of JAK/STAT3 signaling pathway related proteins was analyzed.
RESULTS:
HOTAIR expression in Raji cells was decreased after transfection of HOTAIR siRNA (P<0.01), and miR-20a-5p expression was also decreased after transfection of miR-20a-5p inhibitor (P<0.01). HOTAIR had a targeting and negative regulation relationship with miR-20a-5p (r=-0.826). Silencing HOTAIR promoted the expression of miR-20a-5p and inhibited the proliferation, invasion and migration of Raji cells. Down-regulation of miR-20a-5p expression promoted the proliferation, invasion and migration of Raji cells. Effect of HOTAIR overexpression on the proliferation, invasion and migration of Raji cells could be reversed by up-regulation of miR-20a-5p. Down-regulation of miR-20a-5p expression activated the intracellular JAK/STAT3 signaling pathway.
CONCLUSION
HOTAIR affects the proliferation, invasion and migration of lymphoma cells by targeting miR-20a-5p, and its mechanism may be related to the activation of JAK/STAT3 signaling pathway.
Humans
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Lymphoma
;
MicroRNAs/genetics*
;
RNA, Long Noncoding/genetics*
;
RNA, Small Interfering
6.Apolipoprotein E enhances migration of endometrial cancer cells byactivating the ERK/MMP9 signaling pathway.
Journal of Southern Medical University 2023;43(2):232-241
OBJECTIVE:
To study the role of apolipoprotein E (APOE) in regulating endometrial cancer metastasis and explore the signaling pathway in the regulatory mechanism.
METHODS:
Human endometrial cancer cell line HEC-1B was transfected with a control siRNA (siCtrl) or a specific siRNA targeting APOE (siAPOE) or with either pEGFP-N1 plasmid or an APOEoverexpressing plasmid. The changes in migration, proliferation, apoptosis and cell cycle of the transfected cells were examined using wound healing assay, Transwell migration assay, MTT assay, flow cytometry, and Hoechst staining. The activity of the ERK/MMP9 signaling pathway in the transfected cells was assessed using RT-qPCR and Western blotting. The expression level of APOE in clinical specimens of endometrial cancer tissues were detected using immunohistochemistry and its correlation with differentiation of endometrial cancer tissues was analyzed.
RESULTS:
Wound healing assay and Transwell migration assay showed that compared with those in siCtrl group, HEC-1B cells transfected with siAPOE showed significantly reduced migration ability (P < 0.05), whereas APOE overexpression significantly promoted the migration of the cells (P < 0.05). Neither APOE knockdown nor overexpression produced significant effects on HEC-1B cell proliferation as shown by MTT assay and flow cytometry. Hoechst staining revealed that transfection with siAPOE did not significantly affect apoptosis of HEC-1B cells. APOE knockdown obviously reduced and APOE overexpression enhanced ERK phosphorylation and MMP9 expression in HEC-1B cells (P < 0.05). Treatment with U0126 partially reversed the effects of APOE overexpression on ERK phosphorylation, migration and MMP9 expression in HEC-1B cells (P < 0.05). APOE is highly expressed in clinical samples of endometrial cancer tissues as compared with the adjacent tissues.
CONCLUSION
APOE is highly expressed in endometrial cancer tissues to promote cancer cell migration by enhancing ERK phosphorylation and MMP9 expression.
Female
;
Humans
;
Matrix Metalloproteinase 9/metabolism*
;
Cell Line, Tumor
;
Signal Transduction
;
Endometrial Neoplasms/genetics*
;
Cell Proliferation
;
Apoptosis
;
Cell Movement
;
RNA, Small Interfering
;
Apolipoproteins E
;
Apolipoproteins/pharmacology*
7.Thalamocortical Circuit Controls Neuropathic Pain via Up-regulation of HCN2 in the Ventral Posterolateral Thalamus.
Yi YAN ; Mengye ZHU ; Xuezhong CAO ; Gang XU ; Wei SHEN ; Fan LI ; Jinjin ZHANG ; Lingyun LUO ; Xuexue ZHANG ; Daying ZHANG ; Tao LIU
Neuroscience Bulletin 2023;39(5):774-792
The thalamocortical (TC) circuit is closely associated with pain processing. The hyperpolarization-activated cyclic nucleotide-gated (HCN) 2 channel is predominantly expressed in the ventral posterolateral thalamus (VPL) that has been shown to mediate neuropathic pain. However, the role of VPL HCN2 in modulating TC circuit activity is largely unknown. Here, by using optogenetics, neuronal tracing, electrophysiological recordings, and virus knockdown strategies, we showed that the activation of VPL TC neurons potentiates excitatory synaptic transmission to the hindlimb region of the primary somatosensory cortex (S1HL) as well as mechanical hypersensitivity following spared nerve injury (SNI)-induced neuropathic pain in mice. Either pharmacological blockade or virus knockdown of HCN2 (shRNA-Hcn2) in the VPL was sufficient to alleviate SNI-induced hyperalgesia. Moreover, shRNA-Hcn2 decreased the excitability of TC neurons and synaptic transmission of the VPL-S1HL circuit. Together, our studies provide a novel mechanism by which HCN2 enhances the excitability of the TC circuit to facilitate neuropathic pain.
Animals
;
Mice
;
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics*
;
Neuralgia
;
RNA, Small Interfering
;
Thalamus/metabolism*
;
Up-Regulation
8.Read-through circular RNA rt-circ-HS promotes hypoxia inducible factor 1α expression and renal carcinoma cell proliferation, migration and invasiveness.
Yun Yi XU ; Zheng Zheng SU ; Lin Mao ZHENG ; Meng Ni ZHANG ; Jun Ya TAN ; Ya Lan YANG ; Meng Xin ZHANG ; Miao XU ; Ni CHEN ; Xue Qin CHEN ; Qiao ZHOU
Journal of Peking University(Health Sciences) 2023;55(2):217-227
OBJECTIVE:
To identify and characterize read-through RNAs and read-through circular RNAs (rt-circ-HS) derived from transcriptional read-through hypoxia inducible factor 1α (HIF1α) and small nuclear RNA activating complex polypeptide 1 (SNAPC1) the two adjacent genes located on chromosome 14q23, in renal carcinoma cells and renal carcinoma tissues, and to study the effects of rt-circ-HS on biological behavior of renal carcinoma cells and on regulation of HIF1α.
METHODS:
Reverse transcription-polymerase chain reaction (RT-PCR) and Sanger sequencing were used to examine expression of read-through RNAs HIF1α-SNAPC1 and rt-circ-HS in different tumor cells. Tissue microarrays of 437 different types of renal cell carcinoma (RCC) were constructed, and chromogenic in situ hybridization (ISH) was used to investigate expression of rt-circ-HS in different RCC types. Small interference RNA (siRNA) and artificial overexpression plasmids were designed to examine the effects of rt-circ-HS on 786-O and A498 renal carcinoma cell proliferation, migration and invasiveness by cell counting kit 8 (CCK8), EdU incorporation and Transwell cell migration and invasion assays. RT-PCR and Western blot were used to exa-mine expression of HIF1α and SNAPC1 RNA and proteins after interference of rt-circ-HS with siRNA, respectively. The binding of rt-circ-HS with microRNA 539 (miR-539), and miR-539 with HIF1α 3' untranslated region (3' UTR), and the effects of these interactions were investigated by dual luciferase reporter gene assays.
RESULTS:
We discovered a novel 1 144 nt rt-circ-HS, which was derived from read-through RNA HIF1α-SNAPC1 and consisted of HIF1α exon 2-6 and SNAPC1 exon 2-4. Expression of rt-circ-HS was significantly upregulated in 786-O renal carcinoma cells. ISH showed that the overall positive expression rate of rt-circ-HS in RCC tissue samples was 67.5% (295/437), and the expression was different in different types of RCCs. Mechanistically, rt-circ-HS promoted renal carcinoma cell proliferation, migration and invasiveness by functioning as a competitive endogenous inhibitor of miR-539, which we found to be a potent post-transcriptional suppressor of HIF1α, thus promoting expression of HIF1α.
CONCLUSION
The novel rt-circ-HS is highly expressed in different types of RCCs and acts as a competitive endogenous inhibitor of miR-539 to promote expression of its parental gene HIF1α and thus the proliferation, migration and invasion of renal cancer cells.
Humans
;
Carcinoma, Renal Cell/pathology*
;
Cell Proliferation
;
Hypoxia
;
Kidney Neoplasms
;
MicroRNAs/genetics*
;
Neoplasm Invasiveness/genetics*
;
RNA, Circular/metabolism*
;
RNA, Small Interfering
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
9.Silencing RAB27a inhibits proliferation, invasion and adhesion of triple-negative breast cancer cells.
Li WANG ; Zhirui YAN ; Yaoxiong XIA
Journal of Southern Medical University 2023;43(4):560-567
OBJECTIVE:
To investigate the effect of inhibition of RAB27 protein family, which plays a pivotal role in exosome secretion, on biological behaviors of triple-negative breast cancer cells.
METHODS:
Quantitative real-time PCR and Western blotting were used to examine the expressions of RAB27 family and exosome secretion in 3 triple-negative breast cancer cell lines (MDA-MB-231, MDA-MB-468, and Hs578T) and a normal breast epithelial cell line (MCF10A). The effect of small interfering RNA (siRNA)-mediated silencing of RAB27a and RAB27b on exosome secretion in the 3 breast cancer cell lines was detected using Western blotting, and the changes in cell proliferation, invasion and adhesion were evaluated.
RESULTS:
Compared with normal breast epithelial cells, the 3 triple-negative breast cancer cell lines exhibited more active exosome secretion (P < 0.001) and showed significantly higher expressions of RAB27a and RAB27b at both the mRNA and protein levels (P < 0.01). Silencing of RAB27a in the breast cancer cells significantly down-regulated exosome secretion (P < 0.001), while silencing of RAB27b did not significantly affect exosome secretion. The 3 breast cancer cell lines with RAB27a silencing-induced down-regulation of exosome secretion showed obvious inhibition of proliferation, invasion and adhesion (P < 0.01) as compared with the cell lines with RAB27b silencing.
CONCLUSION
RAB27a plays central role in the exosome secretion in triple-negative breast cancer cells, and inhibiting RAB27a can inhibit the proliferation, invasion and adhesion of the cells.
Humans
;
rab GTP-Binding Proteins/metabolism*
;
Triple Negative Breast Neoplasms
;
Cell Line, Tumor
;
rab27 GTP-Binding Proteins/metabolism*
;
RNA, Small Interfering/genetics*
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
10.Effects and mechanism of knocking down lncRNA H19 to inhibit lipid accumulation in human THP-1 cells-derived macrophages.
Xuemei WANG ; Yue CHE ; Jieying WANG ; Ke MEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(10):884-890
Objective To investigate the effects of long noncoding RNA H19 on lipid accumulation of macrophages under high fat stress and its mechanism. Methods Human THP-1 cells-derived macrophages were incubated with ox-LDL, and the effects of H19 siRNA intervention on lipid accumulation was observed. The THP-1 cells were divided into control group (conventional culture), ox-LDL group, siRNA negative control (NC siRNA) combined with ox-LDL treatment group, and H19 siRNA combined with ox-LDL treatment group. Oil red O staining was used to determine the lipid accumulation in cells, and cholesterol concentration was analyzed by enzymatic method; ATP assay kit for detecting celluar ATP content; colorimetry was used to detect the levels of oxidative stress indicators and ELISA was used to detect the levels of monocyte chemoattractant protein-1 (MCP-1) in the cell supernatant. Western blot analysis was used to detect the protein expression of ATP binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and nuclear factor κB p-p65 (NF-κB p-p65). Results Knockdown H19 significantly inhibited intracellular lipid accumulation, decreased total cholesterol (TC) and cholesterol ester (CE) content, and decreased CE/TC ratio. Knockdown H19 significantly alleviated cell damage including an increase in ATP content, a decrease in oxidative stress levels and a decrease in MCP-1 levels, which caused by high-fat stress. H19 siRNA upregulated expression of ABCA1, PPARα and PGC-1α in THP-1 derived macrophages, downregulated NF-κB signal pathway. Conclusion Knockdown H19 upregulates PGC-1α expression in THP-1 cells and downregulates NF-κB pathway, which promotes cholesterol reverse transport, reduces inflammatory reaction and inhibits lipid accumulation.
Humans
;
Adenosine Triphosphate
;
Cholesterol
;
NF-kappa B
;
PPAR alpha
;
RNA, Long Noncoding/genetics*
;
RNA, Small Interfering/genetics*
;
THP-1 Cells
;
Macrophages/metabolism*
;
Lipid Metabolism

Result Analysis
Print
Save
E-mail