1.Polysaccharide of Alocasia cucullata Exerts Antitumor Effect by Regulating Bcl-2, Caspase-3 and ERK1/2 Expressions during Long-Time Administration.
Qi-Chun ZHOU ; Shi-Lin XIAO ; Ru-Kun LIN ; Chan LI ; Zhi-Jie CHEN ; Yi-Fei CHEN ; Chao-Hua LUO ; Zhi-Xian MO ; Ying-Bo LIN
Chinese journal of integrative medicine 2024;30(1):52-61
OBJECTIVE:
To study the in vitro and in vivo antitumor effects of the polysaccharide of Alocasia cucullata (PAC) and the underlying mechanism.
METHODS:
B16F10 and 4T1 cells were cultured with PAC of 40 µg/mL, and PAC was withdrawn after 40 days of administration. The cell viability was detected by cell counting kit-8. The expression of Bcl-2 and Caspase-3 proteins were detected by Western blot and the expressions of ERK1/2 mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). A mouse melanoma model was established to study the effect of PAC during long-time administration. Mice were divided into 3 treatment groups: control group treated with saline water, positive control group (LNT group) treated with lentinan at 100 mg/(kg·d), and PAC group treated with PAC at 120 mg/(kg·d). The pathological changes of tumor tissues were observed by hematoxylin-eosin staining. The apoptosis of tumor tissues was detected by TUNEL staining. Bcl-2 and Caspase-3 protein expressions were detected by immunohistochemistry, and the expressions of ERK1/2, JNK1 and p38 mRNA were detected by qRT-PCR.
RESULTS:
In vitro, no strong inhibitory effects of PAC were found in various tumor cells after 48 or 72 h of administration. Interestingly however, after 40 days of cultivation under PAC, an inhibitory effect on B16F10 cells was found. Correspondingly, the long-time administration of PAC led to downregulation of Bcl-2 protein (P<0.05), up-regulation of Caspase-3 protein (P<0.05) and ERK1 mRNA (P<0.05) in B16F10 cells. The above results were verified by in vivo experiments. In addition, viability of B16F10 cells under long-time administration culture in vitro decreased after drug withdrawal, and similar results were also observed in 4T1 cells.
CONCLUSIONS
Long-time administration of PAC can significantly inhibit viability and promote apoptosis of tumor cells, and had obvious antitumor effect in tumor-bearing mice.
Mice
;
Animals
;
Alocasia/metabolism*
;
MAP Kinase Signaling System
;
Caspase 3/metabolism*
;
Apoptosis
;
RNA, Messenger/metabolism*
2.Hydroxysafflor Yellow A Promotes HaCaT Cell Proliferation and Migration by Regulating HBEGF/EGFR and PI3K/AKT Pathways and Circ_0084443.
Yue ZHANG ; Yan-Wei XIAO ; Jing-Xin MA ; Ao-Xue WANG
Chinese journal of integrative medicine 2024;30(3):213-221
OBJECTIVE:
To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.
METHODS:
HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.
RESULTS:
HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).
CONCLUSION
HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinase
;
Phosphatidylinositol 3-Kinases/metabolism*
;
ErbB Receptors/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Cell Proliferation
;
RNA, Messenger/genetics*
;
Cell Movement
;
Cell Line, Tumor
;
Chalcone/analogs & derivatives*
;
Quinones
3.The expression and significance of protease activated receptor 2 in ovarian epithelial carcinoma.
Shuang Huan LIU ; Yi Ming MA ; Ya Nan ZHANG ; Xin Hua ZHAO ; Hong Ying WANG ; Bin LI
Chinese Journal of Oncology 2023;45(1):64-73
Objective: To investigate the expression and significance of protease activated receptor 2 (PAR2) in ovarian epithelial carcinoma. Methods: PAR2 mRNA expression levels in 410 cases of epithelial ovarian carcinoma and 88 cases of human normal ovary were analyzed from cancer Genome Atlas (TCGA) database and tissue genotypic expression database (GTEx). Immunohistochemical (IHC) staining of PAR2 protein was performed in 149 patients with ovarian cancer who underwent primary surgical treatment at Cancer Hospital of Chinese Academy of Medical Sciences. Then the relationship between mRNA/protein expression of PAR2 and clinicopathological features and prognosis was analyzed. Gene functions and related signaling pathways involved in PAR2 were studied by enrichment analysis. Results: The mRNA expression of PAR2 in epithelial ovarian carcinoma was significantly higher than that in normal ovarian tissue (3.05±0.72 vs. 0.33±0.16, P=0.004). There were 77 cases showing positive and 19 showing strong positive of PAR2 IHC staining among the 149 patients, accounting for 64.4% in total. PAR2 mRNA/protein expression was closely correlated with tumor reduction effect and initial therapeutic effect (P<0.05). Survival analysis showed that the progression free survival time (P=0.033) and overall survival time (P=0.011) in the group with high PAR2 mRNA expression was significantly lower than that in the low PAR2 mRNA group. Multivariate analysis showed tumor reduction effect, initial therapeutic effect were independent prognostic factors on both progression-free survival and overall survival (P<0.05). The progression-free survival (P=0.016) and overall survival (P=0.038) of the PAR2 protein high expression group was significantly lower than that of the low group. Multivariate analysis showed PAR2 expression, initial treatment effect and chemotherapy resistance were independent prognostic factors on both progression-free survival and overall survival (P<0.05). Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), PAR2 target genes were mainly enriched in function related to intercellular connection, accounting for 40%. Gene enrichment analysis (GSEA) showed that the Wnt/β-catenin signaling pathway (P=0.023), the MAPK signaling pathway (P=0.029) and glycolysis related pathway (P=0.018) were enriched in ovarian cancer patients with high PAR2 mRNA expression. Conclusions: PAR2 expression is closely related to tumor reduction effect, initial treatment effect and survival of ovarian cancer patients. PAR2 may be involved in Wnt/β-catenin signaling pathway and intercellular connection promoting ovarian cancer invasion and metastasis.
Female
;
Humans
;
Carcinoma, Ovarian Epithelial
;
Receptor, PAR-2
;
Ovarian Neoplasms/pathology*
;
Prognosis
;
RNA, Messenger/metabolism*
4.Effect of wheat-grain moxibustion on Wnt/β-catenin signaling pathway in bone marrow cell in mice with bone marrow inhibition.
Tao ZHU ; Yan-Ting CHENG ; Yan-Zhu MA ; Shuai ZHAO ; Xia LI
Chinese Acupuncture & Moxibustion 2023;43(1):67-71
OBJECTIVE:
To observe the effect of wheat-grain moxibustion at "Dazhui" (GV 14), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) on Wnt/β-catenin signaling pathway in bone marrow cell in mice with bone marrow inhibition, and to explore the possible mechanism of wheat-grain moxibustion in treating bone marrow inhibition.
METHODS:
Forty-five SPF male CD1(ICR) mice were randomly divided into a blank group, a model group and a wheat-grain moxibustion group, 15 mice in each group. The bone marrow inhibition model was established by intraperitoneal injection of 80 mg/kg of cyclophosphamide (CTX). The mice in the wheat-grain moxibustion group were treated with wheat-grain moxibustion at "Dazhui" (GV 14), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6), 3 moxa cones per acupoint, 30 s per moxa cone, once a day, for 7 consecutive days. The white blood cell count (WBC) was measured before modeling, before intervention and 3, 5 d and 7 d into intervention. After intervention, the general situation of mice was observed; the number of nucleated cells in bone marrow was detected; the serum levels of interleukin-3 (IL-3), interleukin-6 (IL-6) and granulocyte macrophage colony stimulating factor (GM-CSF) were measured by ELISA; the protein and mRNA expression of β-catenin, cyclinD1 and C-Myc in bone marrow cells was measured by Western blot and real-time PCR method.
RESULTS:
Compared with the blank group, the mice in the model group showed sluggish reaction, unstable gait, decreased body weight, and the WBC, number of nucleated cells in bone marrow as well as serum levels of IL-3, IL-6, GM-CSF were decreased (P<0.01), and the protein and mRNA expression of β-catenin, cyclinD1 and C-Myc was decreased (P<0.01). Compared with the model group, the mice in the wheat-grain moxibustion group showed better general condition, and WBC, the number of nucleated cells in bone marrow as well as serum levels of IL-3, IL-6, GM-CSF were increased (P<0.01, P<0.05), and the protein and mRNA expression of β-catenin, cyclinD1 and C-Myc was increased (P<0.05).
CONCLUSION
Wheat-grain moxibustion shows therapeutic effect on bone marrow inhibition, and its mechanism may be related to activating Wnt/β-catenin signaling pathway in bone marrow cells, improving bone medullary hematopoiesis microenvironment and promoting bone marrow cell proliferation.
Animals
;
Male
;
Mice
;
beta Catenin/metabolism*
;
Bone Marrow/physiopathology*
;
Bone Marrow Cells/physiology*
;
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism*
;
Interleukin-3/metabolism*
;
Interleukin-6/metabolism*
;
Mice, Inbred ICR
;
Moxibustion/methods*
;
RNA, Messenger/metabolism*
;
Triticum
;
Wnt Signaling Pathway
;
Hematopoiesis
5.Role of N6-methyladenosine RNA methylation in central nervous system: a review.
Chinese Journal of Biotechnology 2023;39(1):45-59
There are a variety of post-transcriptional modifications in mRNA, which regulate the stability, splicing, translation, transport and other processes of mRNA, followed by affecting cell development, body immunity, learning and cognition and other important physiological functions. m6A modification is one of the most abundant post-transcriptional modifications widely existing in mRNA, regulating the metabolic activities of RNA and affecting gene expression. m6A modified homeostasis is critical for the development and maintenance of the nervous system. In recent years, m6A modification has been found in neurodegenerative diseases, mental diseases and brain tumors. This review summarizes the role of m6A methylation modification in the development, function and related diseases of the central nervous system in recent years, providing potential clinical therapeutic targets for neurological diseases.
Methylation
;
Central Nervous System/metabolism*
;
RNA, Messenger/metabolism*
;
RNA
6.Excess Oxygen Supply for Different Time Periods Affect Energy Metabolism in Rat Alveolar Epithelial Type Ⅱ Cells.
Rong-Rong HUANG ; Shan-Shan QU ; Hong GUO ; Su-Heng CHEN ; Chuan-Qi YANG ; Jun-Mei ZHANG ; Yu-Lan LI
Acta Academiae Medicinae Sinicae 2023;45(1):9-15
Objective To observe the effect of excess oxygen supply for different time periods on the mitochondrial energy metabolism in alveolar epithelial type Ⅱ cells. Methods Rat RLE-6TN cells were assigned into a control group (21% O2 for 4 h) and excess oxygen supply groups (95% O2 for 1,2,3,and 4 h,res-pectively).The content of adenosine triphosphate (ATP),the activity of mitochondrial respiratory chain complex V,and the mitochondrial membrane potential were determined by luciferase assay,micro-assay,and fluorescent probe JC-1,respectively.Real-time fluorescence quantitative PCR was employed to determine the mRNA levels of NADH dehydrogenase subunit 1 (ND1),cytochrome b (Cytb),cytochrome C oxidase subunit I (COXI),and adenosine triphosphatase 6 (ATPase6) in the core subunits of mitochondrial respiratory chain complexes Ⅰ,Ⅲ,Ⅳ,and Ⅴ,respectively. Results Compared with the control group,excess oxygen supply for 1,2,3,and 4 h down-regulated the mRNA levels of ND1 (q=24.800,P<0.001;q=13.650,P<0.001;q=9.869,P<0.001;q=20.700,P<0.001),COXI (q=16.750,P<0.001;q=10.120,P<0.001;q=8.476,P<0.001;q=14.060,P<0.001),and ATPase6 (q=22.770,P<0.001;q=15.540,P<0.001;q=12.870,P<0.001;q=18.160,P<0.001).Moreover,excess oxygen supply for 1 h and 4 h decreased the ATPase activity (q=9.435,P<0.001;q=11.230,P<0.001) and ATP content (q=5.615,P=0.007;q=5.029,P=0.005).The excess oxygen supply for 2 h and 3 h did not cause significant changes in ATPase activity (q=0.156,P=0.914;q=3.197,P=0.116) and ATP content (q=0.859,P=0.557;q=1.273,P=0.652).There was no significant difference in mitochondrial membrane potential among the groups (F=0.303,P=0.869). Conclusion Short-term excess oxygen supply down-regulates the expression of the core subunits of mitochondrial respiratory chain complexes and reduces the activity of ATPase,leading to the energy metabolism disorder of alveolar epithelial type Ⅱ cells.
Animals
;
Rats
;
Energy Metabolism
;
Adenosine Triphosphate
;
Adenosine Triphosphatases
;
RNA, Messenger
;
Oxygen
7.Mechanism of Buyang Huanwu Decoction glycosides against atherosclerotic inflammation through NF-κB signaling pathway.
Xin-Ying FU ; Zheng-Ji SUN ; Qing-Yin LONG ; Wei TAN ; Yan-Jun LI ; Lu WU ; Qing-Hu HE ; Wei ZHANG
China Journal of Chinese Materia Medica 2023;48(1):202-210
This study aims to explore the effect of Buyang Huanwu Decoction glycosides on the inflammatory response of apolipoprotein E~(-/-)(ApoE~(-/-)) mice and RAW264.7 cells through nuclear factor kappa-B(NF-κB) signaling pathway. In the in vivo experiment, ApoE~(-/-) mice were fed with high-fat diets for 12 weeks to induce the animal model of atherosclerosis, and 75 μg·mL~(-1) oxidized low-density lipoprotein(Ox-LDL) incubated RAW264.7 cells for 24 h to establish the atherosclerosis cell model. Automatic biochemical analyzer, hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay(ELISA), Western blot, and droplet digital polymerase chain reaction(PCR) were used to determine the blood lipid levels, aortic intimal thickness, inflammatory factor content, NF-κB pathway-related proteins, and mRNA expression levels, and evaluate arterial atherosclerotic lesions and anti-atherosclerotic mechanisms of the drug. The model of atherosclerosis was successfully established in ApoE~(-/-) mice after 12 weeks of feeding with high-fat diets. In the model group, the plasma levels of total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-C) were increased(P<0.01), the intima of the blood vessels was thickened, the levels of inflammatory factors tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) were increased, and the protein and mRNA expressions of NF-κB and inhibitor of NF-κB(IκBα) were significantly increased as compared with the control group. Compared with the model group, the high-dose Buyang Huanwu Decoction glycoside group decreased the plasma levels of TC, TG, and LDL-C, reduced the plaque area and thickness and the content of inflammatory factor TNF-α, and inhibited the protein and mRNA expressions of NF-κB and IκBα, with the effect same as Buyang Huanwu Decoction. In the in vivo experiment, 75 μg·mL~(-1) Ox-LDL stimulated RAW264.7 cells for 24 h to successfully establish a foam cell model. As compared with the control group, the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα in the model group increased. Compared with the model group, the middle-dose and high-dose Buyang Huanwu Decoction glycoside groups decreased the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα. The above results show that the glycosides are the main effective substances of Buyang Huanwu Decoction against atherosclerosis, which inhibit the NF-κB pathway and reduce the inflammatory response, thus playing the role against atherosclerotic inflammation same as Buyang Huanwu Decoction.
Mice
;
Animals
;
NF-kappa B/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Glycosides/pharmacology*
;
Cholesterol, LDL
;
Atherosclerosis/genetics*
;
Signal Transduction
;
Inflammation/drug therapy*
;
Interleukin-6
;
Apolipoproteins E/pharmacology*
;
RNA, Messenger/metabolism*
8.Effects of total ginsenosides from Panax ginseng stems and leaves on gut microbiota and short-chain fatty acids metabolism in acute lung injury mice.
Qi DING ; Si-Wen FENG ; Gong-Hao XU ; Ye-Yang CHEN ; Yuan-Yuan SHI
China Journal of Chinese Materia Medica 2023;48(5):1319-1329
This study aimed to investigate the biological effects and underlying mechanisms of the total ginsenosides from Panax ginseng stems and leaves on lipopolysaccharide(LPS)-induced acute lung injury(ALI) in mice. Sixty male C57BL/6J mice were randomly divided into a control group, a model group, the total ginsenosides from P. ginseng stems and leaves normal administration group(61.65 mg·kg~(-1)), and low-, medium-, and high-dose total ginsenosides from P. ginseng stems and leaves groups(15.412 5, 30.825, and 61.65 mg·kg~(-1)). Mice were administered for seven continuous days before modeling. Twenty-four hours after modeling, mice were sacrificed to obtain lung tissues and calculate lung wet/dry ratio. The number of inflammatory cells in bronchoalveolar lavage fluid(BALF) was detected. The levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in BALF were detected. The mRNA expression levels of IL-1β, IL-6, and TNF-α, and the levels of myeloperoxidase(MPO), glutathione peroxidase(GSH-Px), superoxide dismutase(SOD), and malondialdehyde(MDA) in lung tissues were determined. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in lung tissues. The gut microbiota was detected by 16S rRNA sequencing, and gas chromatography-mass spectrometry(GC-MS) was applied to detect the content of short-chain fatty acids(SCFAs) in se-rum. The results showed that the total ginsenosides from P. ginseng stems and leaves could reduce lung index, lung wet/dry ratio, and lung damage in LPS-induced ALI mice, decrease the number of inflammatory cells and levels of inflammatory factors in BALF, inhibit the mRNA expression levels of inflammatory factors and levels of MPO and MDA in lung tissues, and potentiate the activity of GSH-Px and SOD in lung tissues. Furthermore, they could also reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Lachnospiraceae and Muribaculaceae, decrease the relative abundance of Prevotellaceae, and enhance the content of SCFAs(acetic acid, propionic acid, and butyric acid) in serum. This study suggested that the total ginsenosides from P. ginseng stems and leaves could improve lung edema, inflammatory response, and oxidative stress in ALI mice by regulating gut microbiota and SCFAs metabolism.
Mice
;
Male
;
Animals
;
Ginsenosides/pharmacology*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6
;
Panax/genetics*
;
Lipopolysaccharides/adverse effects*
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S
;
Mice, Inbred C57BL
;
Acute Lung Injury/genetics*
;
Lung/metabolism*
;
Superoxide Dismutase/metabolism*
;
Plant Leaves/metabolism*
;
RNA, Messenger
9.Chrysin alleviates cerebral ischemia-reperfusion injury by inhibiting ferroptosis in rats.
Jin-Feng SHANG ; Jia-Kang JIAO ; Qian-Nan LI ; Ying-Hui LU ; Jing-Yi WANG ; Ming-Xue YAN ; Yin-Lian WEN ; Gui-Jin-Feng HUANG ; Xiao-Lu ZHANG ; Xin LIU
China Journal of Chinese Materia Medica 2023;48(6):1597-1605
The purpose of this study is to investigate whether chrysin reduces cerebral ischemia-reperfusion injury(CIRI) by inhi-biting ferroptosis in rats. Male SD rats were randomly divided into a sham group, a model group, high-, medium-, and low-dose chrysin groups(200, 100, and 50 mg·kg~(-1)), and a positive drug group(Ginaton, 21.6 mg·kg~(-1)). The CIRI model was induced in rats by transient middle cerebral artery occlusion(tMCAO). The indexes were evaluated and the samples were taken 24 h after the operation. The neurological deficit score was used to detect neurological function. The 2,3,5-triphenyl tetrazolium chloride(TTC) staining was used to detect the cerebral infarction area. Hematoxylin-eosin(HE) staining and Nissl staining were used to observe the morphological structure of brain tissues. Prussian blue staining was used to observe the iron accumulation in the brain. Total iron, lipid pero-xide, and malondialdehyde in serum and brain tissues were detected by biochemical reagents. Real-time quantitative polymerase chain reaction(RT-qPCR), immunohistochemistry, and Western blot were used to detect mRNA and protein expression of solute carrier fa-mily 7 member 11(SLC7A11), transferrin receptor 1(TFR1), glutathione peroxidase 4(GPX4), acyl-CoA synthetase long chain family member 4(ACSL4), and prostaglandin-endoperoxide synthase 2(PTGS2) in brain tissues. Compared with the model group, the groups with drug intervention showed restored neurological function, decreased cerebral infarction rate, and alleviated pathological changes. The low-dose chrysin group was selected as the optimal dosing group. Compared with the model group, the chrysin groups showed reduced content of total iron, lipid peroxide, and malondialdehyde in brain tissues and serum, increased mRNA and protein expression levels of SLC7A11 and GPX4, and decreased mRNA and protein expression levels of TFR1, PTGS2, and ACSL4. Chrysin may regulate iron metabolism via regulating the related targets of ferroptosis and inhibit neuronal ferroptosis induced by CIRI.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Ferroptosis
;
Signal Transduction
;
Brain Ischemia/metabolism*
;
Cyclooxygenase 2/metabolism*
;
RNA, Messenger
;
Cerebral Infarction
;
Reperfusion Injury/metabolism*
;
Malondialdehyde
;
Infarction, Middle Cerebral Artery
10.Regulatory effect of eight Chinese herbal medicines on glucose and lipid metabolism and their potential active components based on HCBP6 target.
Qian-Wen CHEN ; Ting LIU ; Zhong-Yuan GUO ; Yong-Xin ZHANG ; Hai-Hui LIU ; Wei-Hong FENG ; Chun LI
China Journal of Chinese Materia Medica 2023;48(6):1632-1641
With the improvement of living standards and changes in working style, the prevalence of abnormal glucose and lipid metabolism in humans is increasing in modern society. Clinically, the related indicators are often improved by changing the lifestyle and/or taking hypoglycemic and lipid-lowering drugs, but there are no therapeutic drugs for disorders of glucose and lipid metabolism at present. Hepatitis C virus core protein binding protein 6(HCBP6) is a newly discovered target that can regulate triglyceride and cholesterol content according to level oscillations in the body, thereby regulating abnormal glucose and lipid metabolism. Relevant studies have shown that ginsenoside Rh_2 can significantly up-regulate the expression of HCBP6, but there are few studies on the effect of Chinese herbal medicines on HCBP6. Moreover, the three-dimensional structural information of HCBP6 has not been determined and the discovery of potential active components acting on HCBP6 is not rapidly advanced. Therefore, the total saponins of eight Chinese herbal medicines commonly used to regulate abnormal glucose and lipid metabolism were selected as the research objects to observe their effect on the expression of HCBP6. Then, the three-dimensional structure of HCBP6 was predicted, followed by molecular docking with saponins in eight Chinese herbal medicines to quickly find potential active components. The results showed that all total saponins tended to up-regulate HCBP6 mRNA and protein expression, where gypenosides showed the optimum effect on up-regulating HCBP6 mRNA and ginsenosides showed the optimum effect on up-regulating HCBP6 protein expression. Reliable protein structures were obtained after the prediction of protein structures using the Robetta website and the evaluation of the predicted structures by SAVES. The saponins from the website and literature were also collected and docked with the predicted protein, and the saponin components were found to have good binding activity to the HCBP6 protein. The results of the study are expected to provide ideas and methods for the discovery of new drugs from Chinese herbal medicines to regulate glucose and lipid metabolism.
Humans
;
Glucose
;
Lipid Metabolism
;
Molecular Docking Simulation
;
Drugs, Chinese Herbal/pharmacology*
;
Ginsenosides
;
Proteins
;
Saponins
;
RNA, Messenger

Result Analysis
Print
Save
E-mail