1.Study on the apoptosis-inducing effect of esculetin on acute myeloid leukemia HL-60 cells via regulating the AKT/SKP2/MTH1 pathway
Weihua SONG ; Fuying CHU ; Wei XIE ; Jinliang CHEN ; Ping ZHAO ; Hong QIU ; Jian TAO ; Xiang CHEN
China Pharmacy 2026;37(1):36-41
OBJECTIVE To investigate the apoptosis-inducing effect of esculetin (Esc) on acute myeloid leukemia (AML) HL-60 cells by regulating the protein kinase B (AKT)/S-phase kinase-associated protein 2 (SKP2)/MutT homolog 1 (MTH1) pathway. METHODS AML HL-60 cells were randomly divided into control group (routine culture), Esc low-concentration group (L-Esc group, 25 μmol/L Esc), Esc medium-concentration group (M-Esc group, 50 μmol/L Esc), Esc high-concentration group (H-Esc group, 100 μmol/L Esc), and high-concentration of Esc+ SC79 (AKT agonist) group (100 μmol/L Esc+5 μmol/L SC79). Cell proliferation in each group was detected by MTT assay and colony formation assay. The level of reactive oxygen species (ROS) in cells was measured by using the CM-H2DCFDA fluorescent probe. Cell apoptosis was analyzed by flow cytometry. Western blot assay was performed to detect the expression levels of apoptosis-related proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), cleaved caspase-3], AKT/SKP2/MTH1 pathway-related proteins (p-AKT, AKT, SKP2, MTH1), along with the upstream and downstream proteins of AKT phosphatidylinositol 3-kinase (PI3K), cyclin-dependent kinase inhibitor 1 (P21) and cyclin-dependent kinase inhibitor 1B (P27). RESULTS Compared with control group, the cell viability, colony number, and the phosphorylation levels of AKT and PI3K proteins as well as protein expressions of SKP2, MTH1 and Bcl-2 were significantly decreased (P<0.05), while ROS level, apoptosis rate, and the expression levels of Bax, cleaved caspase-3, P21 and P27 proteins were significantly increased (P<0.05). Moreover, the effects of Esc exhibited concentration-dependence (P<0.05). Compared with H-Esc group, above indexes of high-concentration of Esc+ SC79 group were reversed significantly (P<0.05). CONCLUSIONS Esc may promote massive ROS production and induce activation of apoptosis in HL-60 cells by inhibiting the AKT/SKP2/MTH1 pathway, thus inhibiting the proliferation of HL-60 cells.
2.Trends in incidence and mortality of lung cancer in Huangpu District from 2002 to 2019
QIU Fengqian ; ZHAO Junfeng ; CHEN Weihua ; DU Juan ; JI Yunfang ; GAO Shuna ; MENG Jie ; HE Lihua ; CHEN Bo ; ZHANG Yan
Journal of Preventive Medicine 2025;37(2):143-147
Objective:
To investigate the trends in incidence and mortality of lung cancer in Huangpu District, Shanghai Municipality from 2002 to 2019, so as to provide the evidence for formulating lung cancer prevention and control measures.
Methods:
Data of lung cancer incidence and mortality among residents in Huangpu District from 2002 to 2019 were collected through the Shanghai Cancer Registration and Reporting Management System. The crude incidence and mortality of lung cancer was calculated, and standardized by the data from the Chinese Fifth National Population Census in 2000 (Chinese-standardized rate) and the Segi's world standard population in 1960 (world-standardized rate). The trends in incidence and mortality of lung cancer among residents by age and gender were evaluated using annual percent change (APC).
Results:
A total of 12 965 cases of lung cancer were reported in Huangpu District from 2002 to 2019, and the crude incidence rate was 80.66/105, the Chinese-standardized incidence rate was 34.54/105, and the world-standardized incidence rate was 31.30/105, all showing upward trends (APC=4.588%, 2.933% and 3.247%, all P<0.05). A total of 10 102 deaths of lung cancer were reported, and the crude mortality rate was 62.30/105, showing an upward trend (APC=0.959%, P<0.05); the Chinese-standardized mortality was 25.93/105, and the world-standardized mortality was 22.05/105, both showing downward trends (APC=-1.282% and -1.263%, both P<0.05). The crude incidence and mortality rates of lung cancer in males were higher than those in females (101.39/105 vs. 60.52/105, 85.45/105 vs. 39.87/105, both P<0.05). The crude incidence and mortality rates of lung cancer showed upward trends with age (both P<0.05), reaching their peaks in the age groups of 80-<85 years (341.37/105) and 85 years or above (355.97/105), respectively.
Conclusions
The incidence of lung cancer showed an upward trend, while the mortality showed a downward trend in Huangpu District from 2002 to 2019. Elderly men were the high-risk group for lung cancer incidence and mortality.
3.Research advances in traditional Chinese medicine for the treatment of hepatocellular carcinoma by regulating immune cells
Lijuan LONG ; Zongyu WANG ; Yali ZHAO ; Chuanfu QIN ; Hua QIU
Journal of Clinical Hepatology 2025;41(2):349-358
Hepatocellular carcinoma (HCC) is a common malignant tumor with a high mortality rate, an insidious onset, and complex pathological mechanisms. In the tumor microenvironment, tumor-promoting immune cells protect tumor cells from immune attacks, while dysfunction of anti-tumor immune cells causes the inhibition of immune response, thereby leading to the continuous deterioration of cancer. In recent years, traditional Chinese medicine has shown good efficacy in the treatment of HCC, and it can inhibit the proliferation and metastasis of cancer cells by regulating immune cells. By analyzing related articles in China and globally, this article summarizes how immune cells affect the progression of HCC through the immunosuppressive pathway and how traditional Chinese medicine exerts an anti-HCC effect by regulating immune cells, in order to provide theoretical basis and reference for optimizing the treatment of HCC.
4.Randomized Controlled Study of Baoshen Prescription in Treating Stage Ⅳ Diabetic Nephropathy in Patients with Syndromes of Qi-Yin Deficiency and Kidney Collateral Stasis and Obstruction
Yiting QIU ; Shuangshuang HONG ; Zhiqiu LIU ; Xinru SUN ; Yuefen WANG ; Mengchao LIU ; Wenjing ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):124-131
ObjectiveTo evaluate the clinical efficacy and safety of Baoshen prescription in the treatment of stage Ⅳ diabetic nephropathy (DN) in the patients with syndromes of Qi-Yin deficiency and kidney collateral stasis and obstruction, and to explore the mechanism of this prescription delaying the disease progression. MethodsA randomized, controlled, double-blind, multicenter clinical trial was conducted, in which 94 stage Ⅳ DN patients with syndromes of Qi-Yin deficiency and kidney collateral stasis and obstruction were randomly assigned into Baoshen prescription and control groups (47 cases). The treatment lasted for 12 weeks. The primary efficacy indicators were mainly renal function indexes, including urine albumin-to-creatinine ratio (UACR), 24-hour urine total protein (24 h-UTP), serum creatinine (SCr), and estimated glomerular filtration rate (eGFR). The secondary efficacy indicators were metabolic memory of hyperglycemia, podocyte epithelial-to-mesenchymal transdifferentiation-related indexes, and TCM syndrome score. ResultsAfter 12 weeks of treatment, the Baoshen prescription group showed lowered levels of advanced glycation end products (lgAGEs), connective tissue growth factor (CTGF), type Ⅳ collagen (Col-Ⅳ), receptor of AGEs (RAGE), urinary fibroblast-specific protein-1 (FSP-1), UACR, 24 h-UTP, and glycated hemoglobin (HbAlc) (P<0.05), and an upward trend of miR-21 mRNA. The control group showed elevated levels of SCr and UREA and lowered levels of urinary FSP-1, eGFR, and HbAlc (P<0.05). After treatment, the Baoshen prescription group had lower levels of lgAGEs, CTGF, urinary FSP-1, SCr, UACR, and 24 h-UTP and higher levels of Col-Ⅳ and eGFR than the control group (P<0.05). In addition, the Baoshen prescription group showed statistically significant differences in SCr, eGFR, UACR, and 24 h-UTP before and after treatment (P<0.05). ConclusionBaoshen prescription can effectively improve the renal function, reduce the urinary protein level, and alleviate clinical symptoms in stage Ⅳ DN patients with syndromes of Qi-Yin deficiency and kidney collateral stasis and obstruction. The mechanism may be related to the metabolic memory of hyperglycemia and epithelial-to-mesenchymal transdifferentiation of podocytes.
5.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
6.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
7.Phorcides analytic engine-assisted corneal topography-guided personalized LASIK for the treatment of myopia and astigmatism
Xuanyu QIU ; Xindi WANG ; Yimeng FAN ; Zhao LIU ; Shengjian MI ; Li QIN
International Eye Science 2025;25(6):1020-1025
AIM: To observe the clinical outcomes of Phorcides analytic engine-assisted topography-guided personalized laser assisted in situ keratomileusis(LASIK)for the treatment of myopia and astigmatism in virgin eyes with the refractive astigmatism significantly deviating from corneal topography.METHODS: Retrospective clinical study. A total of 32 cases(42 eyes)with myopia and astigmatism that received corneal topography-guided personalized LASIK in the Ophthalmology Refractive Surgery Center of the First Affiliated Hospital of Xi'an Jiaotong University from December 2019 to March 2021 were selected. The uncorrected distance visual acuity(UDVA), best corrected distance visual acuity(CDVA), refractive state and aberrations before and at 6 mo after surgery were recorded.RESULTS: There were 15 males and 17 females, with an age of 23.00(18.00, 29.25)years old; preoperative sphere was -5.75(-6.25, -4.00)D, and cylinder was -0.75(-1.38, -0.25)D. At 6 mo postoperatively, the UDVA exceeded the preoperative CDVA in 19 eyes(45%). The spherical equivalent(SEQ)of all eyes(100%)was -0.50 to +0.50 D at 6 mo postoperatively, and the postoperative SEQ of 23 eyes(55%)was -0.13 to +0.13 D. There were 33 eyes(79%)had a postoperative astigmatism ≤ 0.25 D, the target-induced astigmatism(TIA)was 0.94±0.96 D, and the surgically induced astigmatism(SIA)was 0.94±0.86 D, with no statistical significance between TIA and SIA(P>0.05). The astigmatism axial deviation ranged from -5° to +5° in 33 eyes(79%)at 6 mo postoperatively. Compared to pre-operation, the total higher-order aberrations and spherical aberrations within the central 6 mm diameter of the anterior corneal surface increased at 6 mo postoperatively(Z=-3.778, P<0.001; Z=-4.929, P<0.001); the postoperative coma aberrations had no change(Z=-1.763, P=0.078); the postoperative trefoil aberrations decreased(Z=-2.490, P=0.013). Compared to pre-operation, the Strehl ratio of the anterior corneal surface increased significantly at 6 mo after surgeries(t=-5.401, P=0.013).CONCLUSION: Using the Phorcides analytic engine to assist topography-guided personalized LASIK for the treatment of myopia and astigmatism in virgin eyes with the refractive astigmatism significantly deviating from topography-measured astigmatism can achieve good therapeutic effects. Postoperative UDVA exceeded preoperative CDVA in nearly half of the eyes, and the quality of postoperative corneal imaging was improved.
8.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
9.Exploration of Zhuyuwan in Treatment of Atherosclerosis from Perspective of Lipid Transport Disorder
Wei SONG ; Zhongyi ZHANG ; Hairong QIU ; Mei ZHAO ; Zubing ZHOU ; Tao SHEN ; Yong ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):54-61
This article discusses the key pathogenesis of atherosclerosis (AS) based on the physiological characteristics and pathological changes of lipids and introduces the therapeutic effect of Zhuyuwan on AS, aiming to provide a theoretical basis for the treatment of cardiovascular diseases from the spleen. As essential substances, lipids have the same essence but different forms. They circulate throughout the body with body fluids under the action of Yang Qi to nourish the nutrient Qi and support the defensive Qi. Lipid metabolism disorder often leads to the obstruction of Qi movement, the accumulation of dampness and turbidity, and the generation of phlegm and blood stasis. It has been proven that the formation of vulnerable plaques in AS is attributed to the interaction of three pathogenic factors: deficiency of healthy Qi, phlegm-turbidity, and collateral stasis. Their pathological essence is closely related to abnormal lipid metabolism. As lipids constitute the thick and dense components of body fluids, their impaired dispersion may lead to phlegm-turbidity and blood stasis, the pathological process of which is predominantly ascribed to the dysfunction of the spleen in distributing essence. Therefore, AS is rooted in spleen-stomach disorder, manifests as plaques formed by pathological product accumulation in vessels, with lipid transport disorder as its core pathogenesis. Specifically speaking, the dysfunction of spleen in transportation with accumulation of dampness-turbidity marks the initial stage, and blood turbidity and coagulation and phlegm-nodules accumulating in vessels represent the intermediate phase. Cold accumulation and stagnated heat transforming into toxins represent the terminal stage. Zhuyuwan, first recorded in Taiping Holy Prescriptions for Universal Relief, contains equal proportions of Coptidis Rhizoma and Evodiae Fructus. Coptidis Rhizoma, bitter and cold, exerts descending and purging actions to assist stomach Qi in lowering turbidity. Evodiae Fructus, pungent-bitter and hot, disperses obstruction and promotes free flow to support spleen Qi in ascending the clear. The compatibility of Coptidis Rhizoma and Evodiae Fructus ascends the clear and descends the turbid to harmonize Yin and Yang, assisting the spleen in distributing essence and resolving lipid accumulation to reduce lipid levels. In terms of the therapeutic mechanism, Zhuyuwan modulates lipid metabolism by correcting immune-inflammation network imbalance, improving gut microbiota composition and metabolism, and enhancing reverse cholesterol transport. By analyzing the pathological characteristics of lipid transport disorder in AS, this study delves into the intrinsic connections between cardiovascular disease and lipid transport disorder, giving novel insights into the prevention and treatment of AS.
10.Exploration of Zhuyuwan in Treatment of Atherosclerosis from Perspective of Lipid Transport Disorder
Wei SONG ; Zhongyi ZHANG ; Hairong QIU ; Mei ZHAO ; Zubing ZHOU ; Tao SHEN ; Yong ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):54-61
This article discusses the key pathogenesis of atherosclerosis (AS) based on the physiological characteristics and pathological changes of lipids and introduces the therapeutic effect of Zhuyuwan on AS, aiming to provide a theoretical basis for the treatment of cardiovascular diseases from the spleen. As essential substances, lipids have the same essence but different forms. They circulate throughout the body with body fluids under the action of Yang Qi to nourish the nutrient Qi and support the defensive Qi. Lipid metabolism disorder often leads to the obstruction of Qi movement, the accumulation of dampness and turbidity, and the generation of phlegm and blood stasis. It has been proven that the formation of vulnerable plaques in AS is attributed to the interaction of three pathogenic factors: deficiency of healthy Qi, phlegm-turbidity, and collateral stasis. Their pathological essence is closely related to abnormal lipid metabolism. As lipids constitute the thick and dense components of body fluids, their impaired dispersion may lead to phlegm-turbidity and blood stasis, the pathological process of which is predominantly ascribed to the dysfunction of the spleen in distributing essence. Therefore, AS is rooted in spleen-stomach disorder, manifests as plaques formed by pathological product accumulation in vessels, with lipid transport disorder as its core pathogenesis. Specifically speaking, the dysfunction of spleen in transportation with accumulation of dampness-turbidity marks the initial stage, and blood turbidity and coagulation and phlegm-nodules accumulating in vessels represent the intermediate phase. Cold accumulation and stagnated heat transforming into toxins represent the terminal stage. Zhuyuwan, first recorded in Taiping Holy Prescriptions for Universal Relief, contains equal proportions of Coptidis Rhizoma and Evodiae Fructus. Coptidis Rhizoma, bitter and cold, exerts descending and purging actions to assist stomach Qi in lowering turbidity. Evodiae Fructus, pungent-bitter and hot, disperses obstruction and promotes free flow to support spleen Qi in ascending the clear. The compatibility of Coptidis Rhizoma and Evodiae Fructus ascends the clear and descends the turbid to harmonize Yin and Yang, assisting the spleen in distributing essence and resolving lipid accumulation to reduce lipid levels. In terms of the therapeutic mechanism, Zhuyuwan modulates lipid metabolism by correcting immune-inflammation network imbalance, improving gut microbiota composition and metabolism, and enhancing reverse cholesterol transport. By analyzing the pathological characteristics of lipid transport disorder in AS, this study delves into the intrinsic connections between cardiovascular disease and lipid transport disorder, giving novel insights into the prevention and treatment of AS.


Result Analysis
Print
Save
E-mail