1.Hemin regulates mitochondrial pathway of oxidative stress in mouse chondrocytes
Guanghui HE ; Jie YUAN ; Yanqin KE ; Xiaoting QIU ; Xiaoling ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(6):1183-1191
BACKGROUND:Studies have shown that mitochondrial oxidative stress has an important role in the development of knee osteoarthritis,and Hemin can regulate the expression of mitochondria-related proteins. OBJECTIVE:To study the regulatory effect of Hemin on oxidative stress in mouse chondrocytes and its interventional effect and mechanism in knee osteoarthritis. METHODS:(1)In vitro cell experiment:Primary chondrocytes from C57BL/6 mice were extracted and induced with 10 ng/mL interleukin-1β to construct an in vitro chondrocyte model of osteoarthritis.The optimal concentration of Hemin(0,1,10,20,40,80,and 160 μmol/L)for the intervention in mouse chondrocytes was determined by cell counting kit-8 method.Chondrocytes were randomly divided into control group,model group(interleukin-1β)and Hemin group(interleukin-1β+Hemin).Reactive oxygen species,mitochondrial membrane potential and apoptosis of chondrocytes in each group were detected.(2)In vivo experiment:Adult C57BL/6 mice were randomly divided into normal group,model group(osteoarthritis)and Hemin group(osteoarthritis+Hemin),with eight mice in each group.After 4 weeks of Hemin treatment,the behavioral test and histopathological observation of the knee joint were performed in each group.Changes in extracellular matrix-related protein expression and apoptosis in chondrocytes and the expression level of Nrf2/HO-1 protein in cartilage tissue were detected. RESULTS AND CONCLUSION:In vitro experiment:the optimal concentration of Hemin on primary chondrocytes was 40 μmol/L.Compared with the model group,the level of reactive oxygen species was significantly reduced,the mitochondrial membrane potential was significantly improved,and the apoptosis of chondrocytes was reduced in the hemin-treated interleukin-1β-induced chondrocytes.In vivo experiment:After 4 weeks of treatment,compared with the model group,the lower limb function of mice in the Hemin group was significantly improved,the histopathological score was significantly improved,and the apoptosis of knee chondrocytes was significantly reduced.All these findings indicate that Hemin can alleviate oxidative stress,restore mitochondrial function and reduce apoptosis in mouse chondrocytes induced by interleukin-1β.Hemin can improve extracellular matrix degradation,promote chondrocyte anabolism,reduce catabolism and reduce chondrocyte apoptosis in knee osteoarthritis.It may act by activating the chondrocyte Nrf2/HO-1 signaling pathway in the inflammatory environment.
2.A questionnaire survey and analysis on the current situation of forensic ethics practice and educational needs
Wenjie LUO ; Tiantian PAN ; Shiyue LI ; Mengjun ZHAN ; Lirong QIU ; Yuchi ZHOU ; Xin CHEN ; Fei FAN ; Zhenhua DENG
Chinese Medical Ethics 2025;38(3):378-384
ObjectiveTo explore the current situation of forensic ethics practice and education by designing a questionnaire on forensic ethics, with a view to exploring the path of forensic ethics education construction. MethodsA total of 667 valid questionnaires were collected using the online survey method, basically covering various regions across the country and all sub-specialties of forensic medicine. Descriptive analysis was used to analyze the relevant data. ResultsMost practitioners had relevant ethical reflections in the process of forensic practice. 69.12% of the respondents indicated that they had studied the relevant rules, but approximately half stated that there were no corresponding ethical norms or standard operating manuals. The specific behaviors violating ethics in different units were diverse. 23.04% of the respondents reported that they had encountered unethical behaviors, but only 4.9% of them reported such violations. In terms of forensic ethics education, 87.75% of the respondents believed that there were issues with the current model of forensic ethics education. Meanwhile, the respondents showed a high degree of recognition for receiving forensic ethics education, with 84.15% of respondents expressing willingness to participate in relevant courses. More than half of respondents were willing to participate in forensic ethics education during undergraduate studies, new employee training, and regular post-employment training. ConclusionCurrently, there is a problem of ethical neglect in forensic work in China. Combining ethics courses with professional courses at the practitioner training stage and providing regular training at the practice stage are effective measures to popularize forensic ethics knowledge, enhance ethical awareness, and improve the quality of practice.
3.Guangxi expert consensus on rapid comprehensive evaluation of oral dihydropyridine calcium channel blockers in the treatment of cardiovascular disease
Siru ZHOU ; Yue QIU ; Weipei SHEN ; Zhenguang HUANG ; Xiaoyu CHEN ; Hongliang ZHANG
China Pharmacy 2025;36(7):769-778
OBJECTIVE To conduct a rapid and comprehensive evaluation of commonly used oral dihydropyridine calcium channel blockers (DHP CCBs) in Guangxi, and provide scientific basis for clinical medication and drug selection in medical institutions. METHODS Based on the actual drug use data of public medical institutions at the second level and above in Guangxi Zhuang Autonomous Region, and based on the national centralized collection catalog, commonly used oral DHP CCBs were selected. The Professional Committee of Evidence-based Pharmacy of the Guangxi Pharmaceutical Association organized relevant experts from multiple medical institutions in the region to conduct a quantitative scoring of the selected oral DHP CCBs from five key dimensions of pharmaceutical characteristics, effectiveness, safety, economy, and other attributes, by referring to the Quick Guideline for Drug Evaluation and Selection in Chinese Medical Institutions (the Second Edition), combined with the latest evidence-based medical research results, and widely soliciting suggestions from clinical and pharmaceutical experts. Finally, the Guangxi Expert Consensus on Rapid Comprehensive Evaluation of Oral Dihydropyridine Calcium Channel Blockers in the Treatment of Cardiovascular Disease was formulated. RESULTS A total of 30 commonly used oral DHP CCBs were selected. Among them, Amlodipine besylate tablets (Huizhi) demonstrated superior comprehensive performance (81.79 points), excelling particularly in pharmaceutical properties, effectiveness and other attributes. The compound scores of Amlodipine besylate tablets (Chongqing Yaoyou) and Amlodipine besylate tablets (Suzhou Dongrui) ranked second and third respectively, with scores of 81.66 and 81.60 points. CONCLUSIONS This consensus can provide guidance and decision-making support for the rational clinical application of oral DHP CCBs in Guangxi Region and the selection of drug directories in medical institutions.
4.Effects of Tongmai Yangxin Pills (通脉养心丸) on Arrhythmia and K+/Ca2+ Channel-Related Proteins and Gene Expression in Myocardial Tissue of Ischemia-Reperfusion Model Rats
Zuoying XING ; Yucai HU ; Huanhuan SONG ; Boyong QIU ; Yankun SONG ; Yongxia WANG
Journal of Traditional Chinese Medicine 2025;66(8):851-859
ObjectiveTo investigate the effects and potential mechanisms of Tongmai Yangxin Pills (通脉养心丸) (TYPs) in preventing ischemia-reperfusion (I/R)-induced arrhythmia. MethodsSixty male SD rats were randomly assigned to sham operation group, model group, amiodarone group, low-dose and high-dose TYPs group, with 12 rats in each group. The sham operation group and the model group received 10 g/(kg·d) normal saline by gavage, the amiodarone group received 60 mg/(kg·d) amiodarone, and the low-dose and high-dose TMP groups received 1 g/(kg·d) and 2 g/(kg·d) TYPs solution respectively, for 21 days, administered twice daily. On the day after the last administration, the I/R model was established in the model and medication groups by ligation of the left anterior descending coronary artery with a cannula, while the sham operation group underwent the same procedure without ligation. Electrocardiogram recordings were continuously monitored throughout the modeling process. Heart rate was recorded at five time points, before ischemia (t-0), 5-10 min after ischemia (t-1), 10-15 min after ischemia (t-2), 15-30 min after ischemia (t-3), and during the first 2 min of reperfusion (t-4); the incidence of arrhythmia including ventricular premature beats (VPB), ventricular tachycardia (VT), and ventricular fibrillation (VF) was recorded; arrhythmia scores were calculated. After 24 hours of reperfusion, left ventricular myocardial tissue was collected. Hematoxylin-eosin (HE) staining was performed to observe pathological changes. RT-PCR was used to detect the mRNA expression of microRNA-1 (miRNA-1), microRNA-133a (miRNA-133a), and potassium (K+) and calcium (Ca2+) ion channel-related genes including KCND2, KCNH2, KCNE2, KCNQ1, KCNE1, KCNJ2, CACNA1C, and CACNB1. Western blot analysis was used to measure protein levels of transient outward potassium current protein (Kv4.2), rapidly activating delayed rectifier potassium current protein (HERG), slowly activating delayed rectifier potassium current protein (KvLQT1), inward rectifier potassium current protein (Kir2.1), and L-type calcium channel protein (Cav1.2). ResultsCompared with sham operation group, the model group showed diffuse myocardial hemorrhage, inflammatory cell infiltration, myocardial necrosis, nuclear pyknosis, vacuolar degeneration, and disrupted myocardial fibers; the model group also exhibited a decreased heart rate (t-1 to t-4), increased arrhythmia scores, elevated miRNA-1 and miRNA-133a expression, and decreased mRNA expression of KCND2, KCNH2, KCNE2, KCNQ1, KCNE1, KCNJ2, CACNA1C, and CACNB1 in myocardial tissue; additionally, Kv4.2, HERG, KvLQT1, Kir2.1, and Cav1.2 protein levels significantly reduced (P<0.01). Compared to the model group, all medication-treated groups showed reduced myocardial damage, including less hemorrhage, reduced inflammatory infiltration, and improved myocardial structure, with the high-dose TYPs group exhibiting the most significant improvement; the amiodarone group and high-dose TYPs group showed a significant increase in heart rate (t-1 to t-4), lower arrhythmia scores, reduced miRNA-1 and miRNA-133a expression; the high-dose TYPs group exhibited significantly increased mRNA expression levels of KCND2, KCNH2, KCNQ1, KCNJ2, and CACNA1C, as well as elevated protein levels of Kv4.2, HERG, KvLQT1, Kir2.1, and Cav1.2 (P<0.05 or P<0.01). ConclusionTMPs can improve myocardial damage and reduce the incidence of ventricular arrhythmia in I/R rats. The underlying mechanism may be related to the downregulation of miRNA-1 and miRNA-133a gene expression, as well as the upregulation of K+ and Ca2+ channel-related genes and proteins.
5.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
6.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
7.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
8.Effect of CCNA2 on Prognosis of Colon Cancer by Regulating Immune Microenvironment of Tumor Cells
Peng YANG ; Ziyi QIU ; Lingling WANG ; Yuan HU ; Zhengzhen CHEN ; Meizhen ZHONG ; Feiyue YU ; Rongyuan QIU
Cancer Research on Prevention and Treatment 2025;52(4):305-312
Objective To investigate the relationship between cyclin A2 (CCNA2) and the prognosis of colon cancer, and its possible mechanism from the perspective of immune infiltration. Methods We downloaded the transcriptome data of colon cancer patients from The Cancer Genome Atlas database. Clinicopathological feature analysis and survival analysis were performed based on the expression levels of CCNA2. A total of 75 specimens of colon cancer and normal tissues were collected, and the expression level of CCNA2 was analyzed using immunohistochemical methods. Multivariate analysis was conducted to explore its relationship with clinicopathological features. Gene Set Enrichment Analysis (GSEA) was used to assess the potential molecular functions of CCNA2 in colon cancer. CIBERSORT algorithm was applied to calculate the correlation between CCNA2 and immune-cell infiltration in colon cancer. Results Database and immunohistochemical analyses indicated that CCNA2 was expressed at a significantly higher level in colon cancer tissues than normal tissues (P<0.001). The overall survival, disease-specific survival, and progression-free interval were all longer in the group with high CCNA2 expression than the group with low expression (all P<0.05). In tumor tissues, the expression level of CCNA2 decreased with increased pathological and TNM stages (P<0.05). The expression level of CCNA2 in normal tissues was consistently lower than that in colon cancer tissues across all clinical stages (all P<0.001). GSEA suggested that Wnt/β-catenin, KRAS, and other signaling pathways were enriched when CCNA2 was lowly expressed. CIBERSORT analysis revealed an increase in the infiltration of immune cells such as regulatory T cells and macrophages M0 when CCNA2 expression was low. Conclusion CCNA2 is highly expressed in colon cancer and closely associated with grade of pathology and TNM stage. It may recruit regulatory T cells through the KRAS and Wnt/β-catenin pathways, thereby reducing immune-cell infiltration and promoting colon cancer progression, leading to poor prognosis.
9.Analysis of influencing factors for maternal intentions to vaccinate age appropriate girls against human papillomavirus
QIU Xiaofei, KANG Xiao, ZHUANG Wenwen, GAO Riyue, ZHANG Delei, SHAO Yanyan, LI Xuedan, YANG Feng
Chinese Journal of School Health 2025;46(4):519-523
Objective:
To investigate the intentions of mothers of ageappropriate girls in Qingdao to vaccinate their daughters against human papillomavirus (HPV), so as to provide theoretical guidance for targeted health education in the future.
Methods:
A multistage random sampling method was adopted to conduct a crosssectional study among 2 244 mothers of girls aged 12-14 years in Qingdao from March to December 2023. The Mann-Whitney U test was used for group comparisons, and Logistic regression was performed to analyze the factors that influenced maternal intention to vaccinate their ageappropriate daughters against HPV.
Results:
Among the surveyed mothers, 89.22% (n=2 002) intended to vaccinate their daughters against HPV, and 68.58% (n=1 539) had fully vaccinated or had plans to complete it for themselves. The knowledge score of mothers intended to vaccinate their daughters was 10 (8, 11). The multivariate Logistic regression analysis showed that mothers aged >45 years (OR=0.19), those with an annual family income of 60 000-<150 000 yuan (OR=0.65), 150 000-<300 000 yuan (OR=0.58), 300 000-500 000 yuan (OR=0.22), and those with higher knowledge scores (OR=0.90) were more likely to vaccinate their daughters (P<0.05). Mothers with a junior college or undergraduate degree (OR=1.66), those who never or occasionally screened for HPV (OR=1.58), those who were intended to be vaccinated, not planning to complete the fullcourse vaccination, or overaged and unvaccinated (OR=7.13), those who were not concerned about their daughters HPV infection (OR=2.54), and those whose daughters were not in adolescence (OR=1.93) were less intended to vaccinate their daughters (P<0.05). The primary reasons for vaccine hesitancy were vaccine safety concerns (65.06%), followed by the belief of mothers that "the children is to young, and can be vaccinated when they are older" (13.25%).
Conclusions
Mothers of eligible girls in Qingdao have relatively higher intentions to vaccinate their daughters against HPV, and willingness is influenced by factors such as the mothers vaccination status, knowledge level, and daughters development stage. It is recommended to strengthen targeted health education, improve the cognitive level and acceptance of mother, and increase the vaccination rate of HPV vaccines.
10.Treating premature ejaculation combined with anxiety and depression based on the "four-dimensional integration" of the "holism of body and spirit" theory
Yi WEI ; Zhiming HONG ; Junfeng QIU ; Zilong CHEN ; Hao KUANG ; Yangling ZENG ; Quan WANG ; Wenbin ZHOU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):418-423
Premature ejaculation refers to a sexual dysfunction in which men experience a short intravaginal ejaculation latency and a lack of control over ejaculation during sexual activity. The onset of this condition is often accompanied by anxiety and depression, which can seriously affect the quality of the patient′s sexual life and the relationship between partners. Based on the "integration of body and spirit" theory in traditional Chinese medicine, our team believes that this condition is a comorbidity of physical and spiritual factors. We propose that the core pathogenesis of this disease lies in the "loss of form and essence, impairment of spirit, and depression of the mind, "while the primary treatment principle involves "nourishing form and regulating spirit." As a result, a new diagnosis and treatment approach of "four-dimensional integration" is summarized in this study. The disease is treated through the four dimensions of shape, body, spirit, and emotion. Traditional Chinese medicine is used to adjust the shape in cases where the physical form is damaged. For individuals with depression of heart and liver qi, the treatment focuses on soothing the heart and smoothing liver qi, and the modified Wangyou Powder and Xuanzhi Decoction is used. In cases where the heart and kidney function are compromised, the treatment involves nourishing both the heart and kidney while restoring interaction between the heart and the kidney, and modified Jihuo Yansi Elixir is used. To reduce the sensitivity of the glans penis, the patient′s body is washed with a traditional Chinese medicine formula, and a delicate fumigation formula is decocted for external washing. For those who are not in tune with their god, psychological counseling can be used to regulate their spirit and advocate "self-partner" and psychotherapy. If there are issues with intimacy, partners should focus on cooperating during foreplay, sexual intercourse, and post-coital interactions. Overall, the treatment aims to harmonize the body and spirit, addressing both physical and psychological factors through a comprehensive, multi-dimensional approach. This method provides new perspectives and ideas for the clinical diagnosis and treatment of this condition.


Result Analysis
Print
Save
E-mail