1.Skin pharmacokinetics of inositol nicotinate in heparin sodium inositol nicotinate cream
Yaling CUI ; Qiong WU ; Liangyu MA ; Bei HU ; Dong YAO ; Zihua XU
Journal of Pharmaceutical Practice and Service 2025;43(1):6-9
Objective To establish an HPLC method to determine the concentration of inositol nicotinate(IN) in rat skin, and study the pharmacokinetic characteristics of IN after transdermal administration of heparin sodium inositol nicotinate cream in rats. Methods HPLC method was used to establish a simple and rapid analytical method for the determination of IN concentration in the skin of rats at different time points after administration. The established method was used to study the pharmacokinetics of IN after transdermal administration of heparin sodium inositol nicotinate cream in rats, and the pharmacokinetic parameters were fitted with DAS software. Results The linearity of the analytical method was good in the concentration range of 0.25-20 μg/ml, the quantitative limit was 0.25 μg/ml, and the average recovery rate was 96.18%. The pharmacokinetic parameters of IN after transdermal administration of heparin sodium inositol nicotinate cream in rats were as follows: t1/2 was (4.555±2.054) h, Tmax was (6±0)h, Cmax was (16.929±2.153)mg/L, AUC0−t was (150.665±16.568) mg·h /L ,AUC0−∞ was (161.074±23.917) mg·h /L, MRT(0−t) was (9.044±0.618)h, MRT(0−∞) was (10.444±1.91) h, CLz/F was (0.19±0.03) L/(h·kg), and Vz/F was (1.19±0.437) L/(h·kg). Conclusion IN could quickly penetrate the skin and accumulate in the skin for a long time, which was beneficial to the pharmacological action of drugs on the lesion site for a long time. The method is simple, rapid, specific and reproducible, which could be successfully applied to the pharmacokinetic study of IN after transdermal administration in rats.
2.Study on the efficacy and mechanism of Tongbianling capsule in the treatment of constipation
Ying CHEN ; Zihua XU ; Bei HU ; Yaling CUI ; Huan GAO ; Qiong WU
Journal of Pharmaceutical Practice and Service 2025;43(1):10-16
Object To study the efficacy and potential mechanism of Tongbianling capsule in constipation. Methods The effects of Tongbianling capsule on intestinal motility in normal mice and carbon powder propulsion rate in small intestine of constipation model mice after were observed administration. The potential targets and key pathways of Tongbianling capsule in treating constipation were identified through network pharmacology. To verify the mechanism, the expression of p-PI3K/PI3K, p-AKT/AKT and CASP3 proteins in mouse colon tissue was detected by the western blot. Results The time for mice to excrete the first black stool was shortened and the number of fecal particles was increased in Tongbianling capsule administration group, and the carbon powder propulsion rate of mice in each Tongbianling capsule administration group was increased. The results of network pharmacology showed that treatment of constipation by Tongbianling capsule may be related to signaling pathways such as PI3K-Akt signaling pathway and 5-HT. The protein expression of p-PI3K/PI3K, p-AKT/AKT, and CASP3 in mouse colon tissue could be significantly downregulated in administration group. Conclusion Tongbianling capsule could effectively promote intestinal peristalsis in mice, increase the frequency of defecation, and effectively treat constipation. The mechanism of its action may be related to the direct or indirect regulation of intestinal motility by the PI3K-Akt signaling pathway.
3.Mechanism of electroacupuncture treating detrusor-bladder neck dyssynergia after suprasacral spinal cord injury by proteomics
Liya TANG ; Qirui QU ; Jincan LIU ; Ming XU ; Lu ZHOU ; Qiong LIU ; Kun AI
Digital Chinese Medicine 2025;8(2):267-278
Objectives:
To elucidate the potential mechanisms of electroacupuncture (EA) in restoring detrusor-bladder neck dyssynergia (DBND) following suprasacral spinal cord injury (SSCI).
Methods:
A total of 52 specific pathogen-free (SPF) grade famale Sprague-Dawley (SD) rats (10 – 12 weeks, 250 – 280 g) were randomly assigned to either a sham group (n = 12) or a spinal cord injury model group (n = 40). In the model group, DBND was induced through Hassan Shaker spinal cord transection at T10 level, with 24 rats meeting inclusion criteria and subsequently randomized into DBND group (n = 12) and EA intervention group (DBND + EA group, n = 12). After spinal shock recovery (day 19 after modeling), DBND + EA group received EA treatment at Ciliao (BL32), Zhongji (RN3), and Sanyinjiao (SP6) acupoints for 20 min per session at 10/50 Hz frequencies, once daily for 10 d. Sham and DBND groups received anesthesia only without EA intervention. On day 29 post-modeling, all rats underwent urodynamic assessments, followed by hematoxylin and eosin (HE) staining, tandem mass tag (TMT) proteomics, and Western blot (WB) analysis of detrusor and bladder neck tissues. Differentially expressed proteins (DEPs) were defined as proteins with P < 0.05, unique peptides ≥ 2, and fold change > 1.2 or < 0.83. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed using KOBAS 3.0 (P < 0.01), and protein-protein interaction (PPI) networks were analyzed using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 11.5 and Cytoscape 3.9.1.
Results:
Compared with sham group, DBND group showed significantly elevated leak point pressure (LPP) and maximum cystometric capacity (MCC) (both P < 0.01). EA treatment significantly reduced both LPP and MCC compared with DBND group (P < 0.01 and P < 0.05, respectively). HE staining revealed that EA reduced detrusor fibrosis and improved bladder neck inflammation. TMT proteomics identified 30 overlapping DEPs in detrusor and 59 overlapping DEPs in bladder neck when comparing DBND + EA/DBND groups with sham group. In detrusor tissue, KEGG analysis revealed 10 significantly enriched pathways (P < 0.01), including mitogen-activated protein kinase (MAPK) signaling pathway. PPI analysis showed 22 of 30 DEPs were interconnected. In bladder neck tissue, 14 pathways were significantly enriched (P < 0.01), including relaxin signaling pathway, with 51 of 59 DEPs showing interconnections. Both TMT and WB validations demonstrated that compared with sham controls, DBND rats exhibited upregulated collagen type IV alpha 2 chain (Col4a2) and downregulated guanine nucleotide-binding protein G(z) subunit alpha (Gnaz) in detrusor tissue, while EA treatment normalized both proteins (both P < 0.05). In bladder neck tissue, DBND rats showed decreased expression of smoothelin (Smtn) and calcium-activated potassium channel subunit beta-1 (Kcnmb1) compared with sham controls (both P < 0.01), which were both upregulated following EA treatment (P < 0.01 and P < 0.05, respectively).
Conclusion
EA restores detrusor-bladder neck coordination in DBND through dual-target mechanisms. In detrusor tissue, EA modulates contraction via extracellular matrix remodeling, cyclic adenosine monophosphate (cAMP) signaling pathway regulation, and enhanced adenosine triphosphate (ATP) biosynthesis mediated by neurotransmitters. In bladder neck tissue, EA promotes relaxation by maintaining contractile phenotypes, reducing fibrosis, suppressing smooth muscle excitation, and regulating presynaptic neurotransmitter release. These findings provide mechanistic insights into EA's therapeutic role in managing DBND.
4.Effects of Combined Tongue Three-Needle Acupuncture and Acupoint Application on Lianquan (CV 23) on Swallowing Function and Surface Electromyography Signals in Patients with Dysphagia after Ischemic Stroke
Xiaoyu DENG ; Dongmei XU ; Qiong FAN ; Lei YUAN ; Wei WU ; Haimei LIU
Journal of Traditional Chinese Medicine 2025;66(15):1559-1565
ObjectiveTo observe the clinical effectiveness and potential mechanism of combined tongue three-needle acupuncture and acupoint application on Lianquan (CV 23) for patients with dysphagia after ischemic stroke. MethodsA prospective study was conducted on 160 patients with post-stroke dysphagia, who were randomly divided into a treatment group and a control group, with 80 cases in each group. The control group received conventional rehabilitation training, while the treatment group received tongue three-needle acupuncture combined with acupoint application on Lianquan (CV 23) on the basis of conventional rehabilitation training, for 4 weeks in both groups. We compared the clinical effectivenss of both groups after treatment, and assessed the swallowing function including videofluoroscopic swallowing study (VFSS), standardized swallowing assessment (SSA) and functional oral intake scale (FIOS), swallowing contrast test including hyoid maximum displacement (HmaxD), pharyngeal transit time (PTT), and upper esophageal sphincter (UES) opening, surface electromyography (sEMG) test including maximum amplitude and swallowing duration as well as swallowing quality of life questionnaire (SWAL-QOL) score of the patients in both groups before treatment, after 2 weeks and 4 weeks of treatment, respectively. ResultsThe total effective rate in treatment group was 82.50% (66/80), significantly higher than 66.25% (53/80) in control group (P<0.05). The VFSS, and FOIS scores, UES opening rate and HmaxD, sEMG maximal amplitude values, and SWAL-QOL scores were increased in both groups after 2 weeks and 4 weeks of treatment compared with the values before treatment (P<0.05), while SSA scores, PTT, and swallowing duration were decreased compared within group before treatment (P<0.05). VFSS and FOIS scores, UES opening rate and HmaxD, sEMG maximal amplitude values, and SWAL-QOL scores after 2 and 4 weeks of treatment in the treatment group were higher (P<0.05), while SSA scores, PTT, and swallowing duration were lower (P<0.05) than those in the control group at the same time. ConclusionCombined tongue three-needle acupuncture and acupoint application on Lianquan (CV 23) for patients with dysphagia after ischemic stroke can significantly improve swallowing activities, and its mechanism of action may be related to the improvement of the contraction ability and coordination of swallowing-related muscle groups.
5.Capacity building status of technical support institutions for occupational disease prevention and treatment in Ningxia Hui Autonomous Region
China Occupational Medicine 2025;52(3):357-360
Objective To understand the capacity of technical support institutions for occupational disease prevention and treatment in Ningxia Hui Autonomous Region (hereinafter referred as "Ningxia"). Methods The basic data of 26 technical support institutions for occupational disease prevention and treatment in Ningxia in 2023 were collected through the "National Management Platform for Technical Support Institutions for Occupational Disease Prevention and Treatment". The status of these institutions was investigated, and their qualifications, human resources, equipment allocation, and testing capacities were analyzed. Results Among the 26 technical support institutions for occupational disease prevention and treatment in Ningxia, all were qualified occupational disease surveillance institutes, eight were qualified occupational hazard factor monitoring institutes, two were qualified occupational medical examination institutes, one was a qualified occupational diagnosis institute, one was a qualified occupational treatment institute, four were qualified for radiological health technical services, and one was qualified for occupational health technical services. A total of 168 professionals engaged in occupational diseases prevention and treatment, with the majority holding a bachelor degree and junior professional titles, accounting for 66.1% and 40.5%, respectively. The technical support institutions for occupational disease prevention and treatment of the district level,city level and county level of Ningxia were provided with 121, 68 and 32 instruments and equipment respectively on average,and the number of testing items of occupational hazard factors which the institutions of aforementioned levels are 50.0,17.0 and 1.3 respectively. Conclusion The technical support institutions for occupational disease prevention and treatment in Ningxia show insufficient qualifications and capacities, inadequate professional staff, imbalanced talent structure, incomplete equipment allocation, weak testing capacity, and an underdeveloped support system.
6.Shexiang Tongxin dropping pills ameliorate myocardial ischemia-reperfusion injury progression via the S1PR2/RhoA/ROCK pathway
Ying Sun ; Boyang Jiao ; Yizhou Liu ; Ran Wang ; Qiong Deng ; David N Criddle ; Yulin Ouyang ; Wei Wang ; Xuegong Xu ; Chun Li
Journal of Traditional Chinese Medical Sciences 2025;2025(1):31-43
Objective:
To investigate the potential protective effect of Shexiang Tongxin dropping pills (STDP) on ischemia-reperfusion injury and its underlying mechanisms in improving endothelial cell function in coronary microvascular disease (CMVD).
Methods:
A rat model of myocardial ischemia-reperfusion injury with CMVD was established using ligation and reperfusion of the left anterior descending artery. The effect of STDP (21.6 mg/kg) on cardiac function was evaluated using echocardiography, hematoxylin-eosin staining, and Evans blue staining. The effects of STDP on the microvascular endothelial barrier were assessed based on nitric oxide production, endothelial nitric oxide synthase expression, structural variety of tight junctions (TJs), and the expression of zonula occludens-1 (ZO-1), claudin-5, occludin, and vascular endothelial (VE)-cadherin proteins. The mechanisms of STDP (50 and 100 ng/mL) were evaluated by examining the expression of sphingosine 1-phosphate receptor 2 (S1PR2), Ras Homolog family member A (RhoA), and Rho-associated coiled-coil-containing protein kinase (ROCK) proteins and the distribution of ZO-1, VE-cadherin, and F-actin proteins in an oxygen and glucose deprivation/reoxygenation model.
Results:
The administration of STDP on CMVD rat model significantly improved cardiac and microvascular endothelial cell barrier functions (all P < .05). STDP enhanced the structural integrity of coronary microvascular positioning and distribution by clarifying and completing TJs and increasing the expression of ZO-1, occludin, claudin-5, and VE-cadherin in vivo (all P < .05). The S1PR2/RhoA/ROCK pathway was inhibited by STDP in vitro, leading to the regulation of endothelial cell TJs, adhesion junctions, and cytoskeletal morphology.
Conclusion
STDP showed protective effects on cardiac impairment and microvascular endothelial barrier injury in CMVD model rats induced by myocardial ischemia-reperfusion injury through the modulation of the S1PR2/RhoA/ROCK pathway.
7.LGR5 interacts with HSP90AB1 to mediate enzalutamide resistance by activating the WNT/β-catenin/AR axis in prostate cancer.
Ze GAO ; Zhi XIONG ; Yiran TAO ; Qiong WANG ; Kaixuan GUO ; Kewei XU ; Hai HUANG
Chinese Medical Journal 2025;138(23):3184-3194
BACKGROUND:
Enzalutamide, a second-generation androgen receptor (AR) pathway inhibitor, is widely used in the treatment of castration-resistant prostate cancer. However, after a period of enzalutamide treatment, patients inevitably develop drug resistance. In this study, we characterized leucine-rich repeated G-protein-coupled receptor 5 (LGR5) and explored its potential therapeutic value in prostate cancer.
METHODS:
A total of 142 pairs of tumor and adjacent formalin-fixed paraf-fin-embedded tissue samples from patients with prostate cancer were collected from the Pathology Department at Sun Yat-sen Memorial Hos-pital. LGR5 was screened by sequencing data of enzalutamide-resistant cell lines combined with sequencing data of lesions with different Gleason scores from the same patients. The biological function of LGR5 and its effect on enzalutamide resistance were investigated in vitro and in vivo . Glutathione-S-transferase (GST) pull-down, coimmunoprecipitation, Western blotting, and immunofluorescence assays were used to explore the specific binding mechanism of LGR5 and related pathway changes.
RESULTS:
LGR5 was significantly upregulated in prostate cancer and negatively correlated with poor patient prognosis. Overexpression of LGR5 promoted the malignant progression of prostate cancer and reduced sensitivity to enzalutamide in vitro and in vivo . LGR5 promoted the phosphorylation of glycogen synthase kinase-3β (GSK-3β) by binding heat shock protein 90,000 alpha B1 (HSP90AB1) and mediated the activation of the Wingless/integrated (WNT)/β-catenin signaling pathway. The increased β-catenin in the cytoplasm entered the nucleus and bound to the nuclear AR, promoting the transcription level of AR, which led to the enhanced tolerance of prostate cancer to enzalutamide. Reducing HSP90AB1 binding to LGR5 significantly enhanced sensitivity to enzalutamide.
CONCLUSIONS
LGR5 directly binds to HSP90AB1 and mediates GSK-3β phosphorylation, promoting AR expression by regulating the WNT/β-catenin signaling pathway, thereby conferring resistance to enzalutamide treatment in prostate cancer.
Male
;
Humans
;
Phenylthiohydantoin/pharmacology*
;
Benzamides
;
Receptors, G-Protein-Coupled/genetics*
;
Nitriles
;
Cell Line, Tumor
;
HSP90 Heat-Shock Proteins/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
Prostatic Neoplasms/drug therapy*
;
beta Catenin/metabolism*
;
Receptors, Androgen/genetics*
;
Animals
;
Mice
;
Wnt Signaling Pathway/physiology*
8.Characterization of protective effects of Jianpi Tongluo Formula on cartilage in knee osteoarthritis from a single cell-spatial heterogeneity perspective.
Yu-Dong LIU ; Teng-Teng XU ; Zhao-Chen MA ; Chun-Fang LIU ; Wei-Heng CHEN ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(3):741-749
This study aims to integrate data mining techniques of single cell transcriptomics and spatial transcriptomics, along with animal experiment validation, so as to systematically characterize the protective effects of Jianpi Tongluo Formula(JTF) on the cartilage in knee osteoarthritis(KOA) and elucidate the underlying molecular mechanisms. Single cell transcriptomics and spatial transcriptomics datasets(GSE254844 and GSE255460) of the cartilage tissue obtained from KOA patients were analyzed to map the single cell-spatial heterogeneity and identify key pathogenic factors. After that, a KOA rat model was established via knee joint injection of papain. The intervention effects of JTF on the expression features of these key factors were assessed through real-time quantitative polymerase chain reaction(PCR), Western blot, and immunohistochemical staining. As a result, the integrated single cell and spatial transcriptomics data identified distinct cell subsets with different pathological changes in different regions of the inflamed cartilage tissue in KOA, and their differentiation trajectories were closely related to the inflammatory fibrosis-like pathological changes of chondrocytes. Accordingly, the expression levels of the two key effect targets, namely nuclear receptor coactivator 4(NCOA4) and high mobility group box 1(HMGB1) were significantly reduced in the articular surface and superficial zone of the inflamed joints when JTF effectively alleviated various pathological changes in KOA rats, thus reversing the abnormal chondrocyte autophagy level, relieving the inflammatory responses and fibrosis-like pathological changes, and promoting the repair of chondrocyte function. Collectively, this study revealed the heterogeneous characteristics and dynamic changes of inflamed cartilage tissue in different regions and different cell subsets in KOA patients. It is worth noting that NCOA4 and HMGB1 were crucial in regulating chondrocyte autophagy and inflammatory reaction, while JTF could reverse the regulation of NCOA4 and HMGB1 and correct the abnormal molecular signal axis in the target cells of the inflamed joints. The research can provide a new research idea and scientific basis for developing a personalized therapeutic schedule targeting the spatiotemporal heterogeneity characteristics of KOA.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Osteoarthritis, Knee/pathology*
;
Humans
;
Male
;
Cartilage, Articular/metabolism*
;
Chondrocytes/metabolism*
;
Rats, Sprague-Dawley
;
Female
;
Protective Agents/administration & dosage*
;
Single-Cell Analysis
;
Middle Aged
;
HMGB1 Protein/metabolism*
9.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
10.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal


Result Analysis
Print
Save
E-mail