1.The ubiquitin-proteasome system: A potential target for the MASLD.
Yue LIU ; Meijia QIAN ; Yonghao LI ; Xin DONG ; Yulian WU ; Tao YUAN ; Jian MA ; Bo YANG ; Hong ZHU ; Qiaojun HE
Acta Pharmaceutica Sinica B 2025;15(3):1268-1280
Metabolic dysfunction-associated steatotic liver disease (MASLD), the most prevalent chronic liver condition globally, lacks adequate and effective therapeutic remedies in clinical practice. Recent studies have increasingly highlighted the close connection between the ubiquitin-proteasome system (UPS) and the progression of MASLD. This relationship is crucial for understanding the disease's underlying mechanism. As a sophisticated process, the UPS govern protein stability and function, maintaining protein homeostasis, thus influencing a multitude of elements and biological events of eukaryotic cells. It comprises four enzyme families, namely, ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), ubiquitin-protein ligases (E3), and deubiquitinating enzymes (DUBs). This review aims to delve into the array of pathways and therapeutic targets implicated in the ubiquitination within the pathogenesis of MASLD. Therefore, this review unveils the role of ubiquitination in MASLD while spotlighting potential therapeutic targets within the context of this disease.
2.Discovery of a potential hematologic malignancies therapy: Selective and potent HDAC7 PROTAC degrader targeting non-enzymatic function.
Yuheng JIN ; Xuxin QI ; Xiaoli YU ; Xirui CHENG ; Boya CHEN ; Mingfei WU ; Jingyu ZHANG ; Hao YIN ; Yang LU ; Yihui ZHOU ; Ao PANG ; Yushen LIN ; Li JIANG ; Qiuqiu SHI ; Shuangshuang GENG ; Yubo ZHOU ; Xiaojun YAO ; Linjie LI ; Haiting DUAN ; Jinxin CHE ; Ji CAO ; Qiaojun HE ; Xiaowu DONG
Acta Pharmaceutica Sinica B 2025;15(3):1659-1679
HDAC7, a member of class IIa HDACs, plays a pivotal regulatory role in tumor, immune, fibrosis, and angiogenesis, rendering it a potential therapeutic target. Nevertheless, due to the high similarity in the enzyme active sites of class IIa HDACs, inhibitors encounter challenges in discerning differences among them. Furthermore, the substitution of key residue in the active pocket of class IIa HDACs renders them pseudo-enzymes, leading to a limited impact of enzymatic inhibitors on their function. In this study, proteolysis targeting chimera (PROTAC) technology was employed to develop HDAC7 drugs. We developed an exceedingly selective HDAC7 PROTAC degrader B14 which showcased superior inhibitory effects on cell proliferation compared to TMP269 in various diffuse large B cell lymphoma (DLBCL) and acute myeloid leukemia (AML) cells. Subsequent investigations unveiled that B14 disrupts BCL6 forming a transcriptional inhibition complex by degrading HDAC7, thereby exerting proliferative inhibition in DLBCL. Our study broadened the understanding of the non-enzymatic functions of HDAC7 and underscored the importance of HDAC7 in the treatment of hematologic malignancies, particularly in DLBCL and AML.
3.Optineurin restrains CCR7 degradation to guide type II collagen-stimulated dendritic cell migration in rheumatoid arthritis.
Wenxiang HONG ; Hongbo MA ; Zhaoxu YANG ; Jiaying WANG ; Bowen PENG ; Longling WANG ; Yiwen DU ; Lijun YANG ; Lijiang ZHANG ; Zhibin LI ; Han HUANG ; Difeng ZHU ; Bo YANG ; Qiaojun HE ; Jiajia WANG ; Qinjie WENG
Acta Pharmaceutica Sinica B 2025;15(3):1626-1642
Dendritic cells (DCs) serve as the primary antigen-presenting cells in autoimmune diseases, like rheumatoid arthritis (RA), and exhibit distinct signaling profiles due to antigenic diversity. Type II collagen (CII) has been recognized as an RA-specific antigen; however, little is known about CII-stimulated DCs, limiting the development of RA-specific therapeutic interventions. In this study, we show that CII-stimulated DCs display a preferential gene expression profile associated with migration, offering a new perspective for targeting DC migration in RA treatment. Then, saikosaponin D (SSD) was identified as a compound capable of blocking CII-induced DC migration and effectively ameliorating arthritis. Optineurin (OPTN) is further revealed as a potential SSD target, with Optn deletion impairing CII-pulsed DC migration without affecting maturation. Function analyses uncover that OPTN prevents the proteasomal transport and ubiquitin-dependent degradation of C-C chemokine receptor 7 (CCR7), a pivotal chemokine receptor in DC migration. Optn-deficient DCs exhibit reduced CCR7 expression, leading to slower migration in CII-surrounded environment, thus alleviating arthritis progression. Our findings underscore the significance of antigen-specific DC activation in RA and suggest OPTN is a crucial regulator of CII-specific DC migration. OPTN emerges as a promising drug target for RA, potentially offering significant value for the therapeutic management of RA.
4.The Combination of Gefitinib and Acetaminophen Exacerbates Hepatotoxicity via ROS-Mediated Apoptosis
Jiangxin XU ; Xiangliang HUANG ; Yourong ZHOU ; Zhifei XU ; Xinjun CAI ; Bo YANG ; Qiaojun HE ; Peihua LUO ; Hao YAN ; Jie JIN
Biomolecules & Therapeutics 2024;32(5):647-657
Gefitinib is the well-tolerated first-line treatment of non-small cell lung cancer. As it needs analgesics during oncology treatment, particularly in the context of the coronavirus disease, where patients are more susceptible to contract high fever and sore throat.This has increased the likelihood of taking both gefitinib and antipyretic analgesic acetaminophen (APAP). Given that gefitinib and APAP overdose can predispose patients to liver injury or even acute liver failure, there is a risk of severe hepatotoxicity when these two drugs are used concomitantly. However, little is known regarding their safety at therapeutic doses. This study simulated the administration of gefitinib and APAP at clinically relevant doses in an animal model and confirmed that gefitinib in combination with APAP exhibited additional hepatotoxicity. We found that gefitinib plus APAP significantly exacerbated cell death, whereas each drug by itself had little or minor effect on hepatocyte survival. Mechanistically, combination of gefitinib and APAP induces hepatocyte death via the apoptotic pathway obviously. Reactive oxygen species (ROS) generation and DNA damage accumulation are involved in hepatocyte apoptosis. Gefitinib plus APAP also promotes the expression of Kelch-like ECH-associated protein 1 (Keap1) and downregulated the antioxidant factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), by inhibiting p62 expression.Taken together, this study revealed the potential ROS-mediated apoptosis-dependent hepatotoxicity effect of the combination of gefitinib and APAP, in which the p62/Keap1/Nrf2 signaling pathway participates and plays an important regulatory role.
5.The impact of lipids on the cancer-immunity cycle and strategies for modulating lipid metabolism to improve cancer immunotherapy.
Mingming ZHENG ; Wenxin ZHANG ; Xi CHEN ; Hongjie GUO ; Honghai WU ; Yanjun XU ; Qiaojun HE ; Ling DING ; Bo YANG
Acta Pharmaceutica Sinica B 2023;13(4):1488-1497
Lipids have been found to modulate tumor biology, including proliferation, survival, and metastasis. With the new understanding of tumor immune escape that has developed in recent years, the influence of lipids on the cancer-immunity cycle has also been gradually discovered. First, regarding antigen presentation, cholesterol prevents tumor antigens from being identified by antigen presenting cells. Fatty acids reduce the expression of major histocompatibility complex class I and costimulatory factors in dendritic cells, impairing antigen presentation to T cells. Prostaglandin E2 (PGE2) reduce the accumulation of tumor-infiltrating dendritic cells. Regarding T-cell priming and activation, cholesterol destroys the structure of the T-cell receptor and reduces immunodetection. In contrast, cholesterol also promotes T-cell receptor clustering and relative signal transduction. PGE2 represses T-cell proliferation. Finally, regarding T-cell killing of cancer cells, PGE2 and cholesterol weaken granule-dependent cytotoxicity. Moreover, fatty acids, cholesterol, and PGE2 can improve the activity of immunosuppressive cells, increase the expression of immune checkpoints and promote the secretion of immunosuppressive cytokines. Given the regulatory role of lipids in the cancer-immunity cycle, drugs that modulate fatty acids, cholesterol and PGE2 have been envisioned as effective way in restoring antitumor immunity and synergizing with immunotherapy. These strategies have been studied in both preclinical and clinical studies.
6.AKT inhibitor Hu7691 induces differentiation of neuroblastoma cells.
Shaowei BING ; Senfeng XIANG ; Zhimei XIA ; Yilong WANG ; Zhonghai GUAN ; Jinxin CHE ; Aixiao XU ; Xiaowu DONG ; Ji CAO ; Bo YANG ; Jinhu WANG ; Qiaojun HE ; Meidan YING
Acta Pharmaceutica Sinica B 2023;13(4):1522-1536
While neuroblastoma accounts for 15% of childhood tumor-related deaths, treatments against neuroblastoma remain scarce and mainly consist of cytotoxic chemotherapeutic drugs. Currently, maintenance therapy of differentiation induction is the standard of care for neuroblastoma patients in clinical, especially high-risk patients. However, differentiation therapy is not used as a first-line treatment for neuroblastoma due to low efficacy, unclear mechanism, and few drug options. Through compound library screening, we accidently found the potential differentiation-inducing effect of AKT inhibitor Hu7691. The protein kinase B (AKT) pathway is an important signaling pathway for regulating tumorigenesis and neural differentiation, yet the relation between the AKT pathway and neuroblastoma differentiation remains unclear. Here, we reveal the anti-proliferation and neurogenesis effect of Hu7691 on multiple neuroblastoma cell lines. Further evidence including neurites outgrowth, cell cycle arrest, and differentiation mRNA marker clarified the differentiation-inducing effect of Hu7691. Meanwhile, with the introduction of other AKT inhibitors, it is now clear that multiple AKT inhibitors can induce neuroblastoma differentiation. Furthermore, silencing AKT was found to have the effect of inducing neuroblastoma differentiation. Finally, confirmation of the therapeutic effects of Hu7691 is dependent on inducing differentiation in vivo, suggesting that Hu7691 is a potential molecule against neuroblastoma. Through this study, we not only define the key role of AKT in the progression of neuroblastoma differentiation but also provide potential drugs and key targets for the application of differentiation therapies for neuroblastoma clinically.
7.Mevalonate improves anti-PD-1/PD-L1 efficacy by stabilizing CD274 mRNA.
Wenxin ZHANG ; Xiaohui PAN ; Yanjun XU ; Hongjie GUO ; Mingming ZHENG ; Xi CHEN ; Honghai WU ; Fengming LUAN ; Qiaojun HE ; Ling DING ; Bo YANG
Acta Pharmaceutica Sinica B 2023;13(6):2585-2600
Mevalonate metabolism plays an important role in regulating tumor growth and progression; however, its role in immune evasion and immune checkpoint modulation remains unclear. Here, we found that non-small cell lung cancer (NSCLC) patients with higher plasma mevalonate response better to anti-PD-(L)1 therapy, as indicated by prolonged progression-free survival and overall survival. Plasma mevalonate levels were positively correlated with programmed death ligand-1 (PD-L1) expression in tumor tissues. In NSCLC cell lines and patient-derived cells, supplementation of mevalonate significantly up-regulated the expression of PD-L1, whereas deprivation of mevalonate reduced PD-L1 expression. Mevalonate increased CD274 mRNA level but did not affect CD274 transcription. Further, we confirmed that mevalonate improved CD274 mRNA stability. Mevalonate promoted the affinity of the AU-rich element-binding protein HuR to the 3'-UTR regions of CD274 mRNA and thereby stabilized CD274 mRNA. By in vivo study, we further confirmed that mevalonate addition enhanced the anti-tumor effect of anti-PD-L1, increased the infiltration of CD8+ T cells, and improved cytotoxic function of T cells. Collectively, our findings discovered plasma mevalonate levels positively correlated with the therapeutic efficacy of anti-PD-(L)1 antibody, and provided the evidence that mevalonate supplementation could be an immunosensitizer in NSCLC.
8.Opportunities and challenges of incretin-based hypoglycemic agents treating type 2 diabetes mellitus from the perspective of physiological disposition.
Yaochen XIE ; Qian ZHOU ; Qiaojun HE ; Xiaoyi WANG ; Jincheng WANG
Acta Pharmaceutica Sinica B 2023;13(6):2383-2402
The treatment of patients with diabetes mellitus, which is characterized by defective insulin secretion and/or the inability of tissues to respond to insulin, has been studied for decades. Many studies have focused on the use of incretin-based hypoglycemic agents in treating type 2 diabetes mellitus (T2DM). These drugs are classified as GLP-1 receptor agonists, which mimic the function of GLP-1, and DPP-4 inhibitors, which avoid GLP-1 degradation. Many incretin-based hypoglycemic agents have been approved and are widely used, and their physiological disposition and structural characteristics are crucial in the discovery of more effective drugs and provide guidance for clinical treatment of T2DM. Here, we summarize the functional mechanisms and other information of the drugs that are currently approved or under research for T2DM treatment. In addition, their physiological disposition, including metabolism, excretion, and potential drug-drug interactions, is thoroughly reviewed. We also discuss similarities and differences in metabolism and excretion between GLP-1 receptor agonists and DPP-4 inhibitors. This review may facilitate clinical decision making based on patients' physical conditions and the avoidance of drug-drug interactions. Moreover, the identification and development of novel drugs with appropriate physiological dispositions might be inspired.
9.Deubiquitination complex platform: A plausible mechanism for regulating the substrate specificity of deubiquitinating enzymes.
Yi-Zheng FANG ; Li JIANG ; Qiaojun HE ; Ji CAO ; Bo YANG
Acta Pharmaceutica Sinica B 2023;13(7):2955-2962
Deubiquitinating enzymes (DUBs) or deubiquitinases facilitate the escape of multiple proteins from ubiquitin‒proteasome degradation and are critical for regulating protein expression levels in vivo. Therefore, dissecting the underlying mechanism of DUB recognition is needed to advance the development of drugs related to DUB signaling pathways. To data, extensive studies on the ubiquitin chain specificity of DUBs have been reported, but substrate protein recognition is still not clearly understood. As a breakthrough, the scaffolding role may be significant to substrate protein selectivity. From this perspective, we systematically characterized the scaffolding proteins and complexes contributing to DUB substrate selectivity. Furthermore, we proposed a deubiquitination complex platform (DCP) as a potentially generic mechanism for DUB substrate recognition based on known examples, which might fill the gaps in the understanding of DUB substrate specificity.
10.Erratum: Author correction to 'Mevalonate improves anti-PD-1/PD-L1 efficacy by stabilizing CD274 mRNA' Acta Pharmaceutica Sinica B 13 (2023) 2585-2600.
Wenxin ZHANG ; Xiaohui PAN ; Yanjun XU ; Hongjie GUO ; Mingming ZHENG ; Xi CHEN ; Honghai WU ; Fengming LUAN ; Qiaojun HE ; Ling DING ; Bo YANG
Acta Pharmaceutica Sinica B 2023;13(10):4337-4337
[This corrects the article DOI: 10.1016/j.apsb.2023.04.002.].

Result Analysis
Print
Save
E-mail