1.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
2.Analysis of the content of five radionuclides in wild edible fungi
Zhenglin YE ; Qiang ZHOU ; Fei TUO ; Baolu YANG ; Zeshu LI ; Weihao QIN ; Shuying KONG
Chinese Journal of Radiological Health 2025;34(2):242-248
Objective To determine the content and distribution characteristics of the artificial radionuclide 137Cs and the natural radionuclides 210Pb, 226Ra, 228Ra, and 40K in wild edible fungi, and calculate the committed effective dose due to 137Cs and 210Pb in wild edible fungi. Methods Thirty samples of wild edible fungi were collected and their caps and stems were separated. A total of 60 samples were measured for 137Cs, 210Pb, 226Ra, 228Ra, and 40K using a BE5030 wide-energy, low-background, high-purity germanium γ spectrometer. The paired analysis of the four radionuclides 226Ra, 210Pb, 137Cs, and 40K was performed using SPSS 11.5. Results Among the 60 samples, the detection rates and dry weight specific activity ranges of 137Cs, 210Pb, 226Ra, 228Ra, and 40K were 97% and 0.62-384 Bq/kg, 73% and 6.4-159 Bq/kg, 52% and 0.7-28.8 Bq/kg, 5% and 0.43-2.18 Bq/kg and 100% and (77.4-264) × 10 Bq/kg, respectively. Conclusion Based on the analysis of the 60 samples, the detection rate of radionuclides is in the order of 40K, 137Cs, 210Pb, 226Ra, and 228Ra. In terms of the specific activity, the distribution of 40K and 226Ra in wild edible fungi in the same region is basically uniform, while the content of 210Pb and 137Cs fluctuates in different samples. Although 137Cs and 210Pb can be detected in most of the wild edible fungi, the annual committed effective dose due to ingestion of wild edible fungi is negligible.
3.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
4.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
5.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
6.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
7.Common characteristics and regulatory mechanisms of airway mucus hypersecretion in lung disease.
Ze-Qiang LIN ; Shi-Man PANG ; Si-Yuan ZHU ; Li-Xia HE ; Wei-Guo KONG ; Wen-Ju LU ; Zi-Li ZHANG
Acta Physiologica Sinica 2025;77(5):989-1000
In a healthy human, the airway mucus forms a thin, protective liquid layer covering the surface of the respiratory tract. It comprises a complex blend of mucin, multiple antibacterial proteins, metabolic substances, water, and electrolytes. This mucus plays a pivotal role in the lungs' innate immune system by maintaining airway hydration and capturing airborne particles and pathogens. However, heightened mucus secretion in the airway can compromise ciliary clearance, obstruct the respiratory tract, and increase the risk of pathogen colonization and recurrent infections. Consequently, a thorough exploration of the mechanisms driving excessive airway mucus secretion is crucial for establishing a theoretical foundation for the eventual development of targeted drugs designed to reduce mucus production. Across a range of lung diseases, excessive airway mucus secretion manifests with unique characteristics and regulatory mechanisms, all intricately linked to mucin. This article provides a comprehensive overview of the characteristics and regulatory mechanisms associated with excessive airway mucus secretion in several prevalent lung diseases.
Humans
;
Mucus/metabolism*
;
Mucins/physiology*
;
Lung Diseases/metabolism*
;
Respiratory Mucosa/metabolism*
;
Pulmonary Disease, Chronic Obstructive/physiopathology*
;
Asthma/physiopathology*
;
Cystic Fibrosis/physiopathology*
;
Mucociliary Clearance/physiology*
8.5-HT Promotes Proliferation and Inhibits Apoptosis of Megakarycytes through 5-HT2BR.
Hui-Min KONG ; Yu-Rong CEN ; Mo YANG ; Qiang PENG ; Jin-Qi HUANG
Journal of Experimental Hematology 2025;33(1):75-81
OBJECTIVE:
To investigate the effect of 5-hydroxytryptamine (5-HT) on the proliferation, apoptosis and colony-forming unit-megakaryocyte (CFU-MK) of Meg-01 cells and its possible mechanisms.
METHODS:
The uptake and metabolism of 5-HT in Meg-01 cells were analysed by reverse-phase high-performance liquid chromatography (RP-HPLC) with electrochemical detection. The expression of 5-HT2B receptor (5-HT2BR) in megakaryocytes was detected by immunofluorescence staining. The cell proliferation and viability were measured by MTT and Trypan blue staining after Meg-01 cells were single-cultured or co-cultured with different concentrations of 5-HT/5-HT2BR inhibitor Ketanserin for 48 h. Meg-01 cells were incubated with 5-HT/ Ketanserin for 72 h, then the flow cytometry was used to detect early apoptosis of the cells and the activity of caspase-3. Using CFU-MK assay to investigate the effect of 5-HT on the differentiation of megakaryocytes.
RESULTS:
5-HT could be uptaken by Meg-01 cells, and metabolized into 5-hydroxyindoleacetic acid (5-HIAA). The expression of 5-HT2BR on megakaryocytes could be detected after immunofluorescence staining. 5-HT could promote the proliferation of Meg-01 cells at a dose-dependent manner (r =0.82), with the most significant effect observed at a concentration of 200 nmol/L (P < 0.001). Trypan blue staining also indicated that 200 nmol/L 5-HT had the most significant effect on the viability of Meg-01 cells (P < 0.05). The proliferation of Meg-01 cells treated with 5-HT was increased compared with the untreated control (P < 0.001), while the combination of 5-HT with ketanserin downregulated this effect. 5-HT significantly reduced the early apoptosis rate (P < 0.001) and caspase-3 activity (P < 0.05) of Meg-01 cells, while addition of ketanserin significantly increased the early apoptosis rate of Meg-01 cells (P < 0.001) and caspase-3 activity also increased to some extent. 5-HT promoted the formation of CFU-MK in bone marrow cells in a dose-dependent manner (r =0.89). The addition of ketanserin reduced the promoting effect of 5-HT on CFU-MK formation (P < 0.01).
CONCLUSION
There may be monoamine oxidase present in megakaryocytes, which can metabolize and decompose 5-HT into 5-HIAA. 5-HT may promote the proliferation and differentiation of megakaryocytes through 5-HT2BR. Besides, 5-HT can also reduce the apoptosis of megakaryocytes, and its anti-apoptotic effect may be mediated by 5-HT2BR and caspase-3 pathways.
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Megakaryocytes/metabolism*
;
Serotonin/pharmacology*
;
Humans
;
Receptor, Serotonin, 5-HT2B/metabolism*
;
Caspase 3/metabolism*
;
Cell Differentiation
9.Anti-SARS-CoV-2 prodrug ATV006 has broad-spectrum antiviral activity against human and animal coronaviruses.
Tiefeng XU ; Kun LI ; Siyao HUANG ; Konstantin I IVANOV ; Sidi YANG ; Yanxi JI ; Hanwei ZHANG ; Wenbin WU ; Ye HE ; Qiang ZENG ; Feng CONG ; Qifan ZHOU ; Yingjun LI ; Jian PAN ; Jincun ZHAO ; Chunmei LI ; Xumu ZHANG ; Liu CAO ; Deyin GUO
Acta Pharmaceutica Sinica B 2025;15(5):2498-2510
Coronavirus-related diseases pose a significant challenge to the global health system. Given the diversity of coronaviruses and the unpredictable nature of disease outbreaks, the traditional "one bug, one drug" paradigm struggles to address the growing number of emerging crises. Therefore, there is an urgent need for therapeutic agents with broad-spectrum anti-coronavirus activity. Here, we provide evidence that ATV006, an anti-SARS-CoV-2 nucleoside analog targeting RNA-dependent RNA polymerase (RdRp), has broad antiviral activity against human and animal coronaviruses. Using mouse hepatitis virus (MHV) and human coronavirus NL63 (HCoV-NL63) as a model, we show that ATV006 has potent prophylactic and therapeutic activity against murine coronavirus infection in vivo. Remarkably, ATV006 successfully inhibits viral replication in mice even when administered 96 h after infection. Due to its oral bioavailability and potency against multiple coronaviruses, ATV006 has the potential to become a useful antiviral agent against SARS-CoV-2 and other circulating and emerging coronaviruses in humans and animals.
10.Erratum: Author correction to "SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade" Acta Pharm Sin B 9 (2019) 304-315.
Mingxia ZHAO ; Wenjie GUO ; Yuanyuan WU ; Chenxi YANG ; Liang ZHONG ; Guoliang DENG ; Yuyu ZHU ; Wen LIU ; Yanhong GU ; Yin LU ; Lingdong KONG ; Xiangbao MENG ; Qiang XU ; Yang SUN
Acta Pharmaceutica Sinica B 2025;15(5):2810-2812
[This corrects the article DOI: 10.1016/j.apsb.2018.08.009.].

Result Analysis
Print
Save
E-mail