1.Treatment of Diabetes Mellitus with Traditional Chinese Medicine Classic Prescriptions: A Review
Yu WANG ; Hedi WANG ; Qiang CHEN ; Guanqun HOU ; Yanting LU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):266-277
As a chronic and lifelong disease, diabetes mellitus occurs across all age groups and gender groups. Since the disease requires lifelong treatment, it seriously affects the quality of life of patients. With the rising incidence on a global scale, diabetes mellitus has become a global problem that seriously affects public health. Moreover, the complications of this disease have aroused concern from the global medical research community, the World Health Organization, and the public. In the past, Western medicine was used in the clinical treatment of diabetes mellitus, which, however, had drug dependence, unsatisfactory efficacy, and side effects. Long-term oral administration of antidiabetics may cause liver and kidney function damage, hypoglycemia and other adverse symptoms. The treatment of diabetes mellitus has been faced with challenges such as limited efficacy and obvious side effects. Therefore, exploring more effective treatment means, especially tapping the potential of traditional Chinese medicine (TCM) in the treatment of diabetes mellitus, is a major issue to be solved. TCM has shown a great application value and a broad prospect in the treatment of diabetes mellitus because of multi-target regulation, a holistic view, synergistic effects, and high safety. TCM has a history of thousands of years in the prevention and treatment of diabetes mellitus, with rich experience accumulated and remarkable results achieved. Particularly, TCM demonstrates definite therapeutic effects on the complications. The application of TCM in the treatment of complications has been recognized and accepted by patients because of the definite therapeutic effect. In recent years, great progress has been achieved in the treatment of diabetes mellitus by the combination of Chinese and western medicine, which has made important contributions to the control of diabetes mellitus. This paper reviews the articles about the treatment of diabetes mellitus with TCM classic prescriptions, summarizes the treatment of clinical cases regarding the indications of these prescriptions, and provides an overview of the treatment mechanisms, aiming to offer fresh insights and strategies for the clinical diagnosis and treatment of diabetes mellitus.
2.Synthesis and anti-breast cancer activity of novel cyclic mono-carbonyl curcumin analogues
Xianhu FENG ; Yongjie CHEN ; Lin CHEN ; Yi HOU ; Wanjun CAO ; Qiang SU
China Pharmacy 2025;36(5):563-567
OBJECTIVE To design and synthesize mono-carbonyl curcumin analogues(MCACs) and investigate the activities of them against breast cancer. METHODS The analogues F1, F2, and F3 were obtained by aldol condensation reaction, and their antitumor activities(including the activities of human breast cancer cell MCF-7 and human lung cancer cell A549) were detected by MTT assay [evaluated with half inhibitory concentration(IC50)]. The results of MTT assay were compared with those of curcumin. Bioinformatics methods were used to collect the core targets of analogues F1, F2 and F3 acting on breast cancer, and then molecular docking verification was carried out. The cell experiments were conducted to investigate the effects of high, medium and low concentrations (16, 8, 4 μmol/L) of F1, F2 and F3 on the expression of the first core target protein as well as the effects of medium concentration of F1, F2 and F3 on the expression of cleaved-caspase-3. RESULTS Compared with curcumin, IC50 of analogues F1, F2 and F3 to A549 and MCF-7 cells(except for IC50 of analogue F2 to A549 cells) were decreased significantly(P< 0.05 or P<0.01); among them, IC50 of analogue F2 to MCF-7 cell was the lowest, being(9.67±1.27) μmol/L. Bioinformatics analysis showed that index of affinity of analogues F1, F2 and F3 with the first core target epidermal growth factor receptor (EGFR), protein kinase B (AKT) and AKT were 5.909 2, 8.402 5 and 6.486 6, respectively; high concentration of F1 could significantly reduce the phosphorylation level of EGFR protein in MCF-7 cells(P<0.01), while low, medium, and high concentrations of F2 and high concentration of F3 could significantly reduce the phosphorylation level of AKT protein in MCF-7 cells(P<0.05 or P<0.01). Medium concentration of F1, F2, and F3 could significantly increase the expression level of cleaved- caspase-3 protein in MCF-7 cells(P<0.01). CONCLUSIONS Designed and synthesized MCACs F1, F2 and F3 all have good anti- breast cancer activity, and F2 has better anti-breast cancer activity.
3.Expression and Clinical Significance of PLCβ4 Gene in Hepatocellular Carcinoma Analyzed Based on TCGA Database and Experimental Validation
Limei WEN ; Yali GUO ; Qiang HOU ; Dongxuan ZHENG ; Wu DAI ; Xiang GAO ; Jianhua YANG ; Junping HU
Cancer Research on Prevention and Treatment 2025;52(6):502-510
Objective To analyze the PLCβ4 gene mRNA expression and its clinical significance in hepatocellular carcinoma (HCC) based on TCGA database. Methods Based on the data on 424 clinical samples (including 374 cases of HCC tissues and 50 cases of nontumor liver tissues) in the TCGA database, Kaplan–Meier method, Cox regression analysis, and immune infiltration analysis were performed to evaluate the relationship between PLCβ4 gene and the clinical characteristics and survival prognosis of HCC patients. Correlation analysis between PLCβ4 gene and 24 types of immune cells was applied to investigate the relationship between PLCβ4 gene and immune cell infiltration and mRNA expression level of TP53 gene, a high-frequency mutation gene in HCC. In addition, paraffin sections of highly, moderately, and poorly differentiated tumor tissues and normal liver tissues from HCC patients were collected. The histopathological observation was carried out via HE staining method, and the expression levels of PLCβ4 and Ki-67 proteins in each clinical sample were verified through the immunohistochemical method. Results The expression level of PLCβ4 gene in HCC was significantly higher than that in normal tissues (P<0.01), and all patients in the PLCβ4 high-expression group had a significantly longer overall survival than those in the low-expression group (P<0.05), which suggested that PLCβ4 substantially affected the prognosis of HCC patients. Correlation analysis showed that the expression level of PLCβ4 gene was highly correlated with immune cell infiltration and the expression level of TP53 gene. As verified by clinical sample experiments, HE staining experiments and immunohistochemical results revealed that PLCβ4 gene expression in HCC tissue samples was significantly higher than that in normal tissues (P<0.001), and it was negatively correlated with the degree of differentiation. Conclusion PLCβ4 may serve as an independent prognostic factor in HCC and is expected to be a novel molecular target for HCC treatment.
4.Association between the Non-Fasting Triglyceride-Glucose Index and Hyperglycemia in pregnancy during the Third Trimester in High Altitudes
Qingqing WANG ; Hongying HOU ; Ma NI ; Yating LIANG ; Xiaoyu CHEN ; WA Zhuoga DA ; Qiang LIU ; Zhenyan HAN
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(5):861-871
ObjectiveTo investigate the relationship between the non-fasting triglyceride and glucose (TyG) index and hyperglycemia in pregnancy during the third trimester in high altitudes. MethodsThis study selected clinical and laboratory data of 774 Tibetan singleton pregnant women who delivered at Chaya People's Hospital of Qamdo city in Xizang autonomous region, from January 2023 to April 2025. The non-fasting TyG index was calculated from non-fasting triglyceride (TG) and random plasma glucose (PG). Based on the tertiles of the non-fasting TyG index values, the individuals were split into three groups (corresponding to non-fasting TyG index of 8.89 and 9.21, respectively). The baseline clinical characteristics, lipid levels and the occurrence of developing hyperglycemia in pregnancy were compared among the three groups. Statistical analyses were performed using ANOVA, Kruskal-Wallis H test, Chi-square test, or Fisher exact test and the relationship between the non-fasting TyG index and hyperglycemia in pregnancy were examined using multivariate logistic regression models and curve fitting. ResultsA total of 774 Tibetan singleton pregnant women were included, with a average age of 27.3 ± 6.1 years, a pre-delivery body mass index (Pre-BMI) of (25.2±2.3)kg/m2 , a proportion of 26.7% (207/774) primigravid women, the mean non-fasting TyG index was 9.1 ± 0.4。Thirty pregnant women were diagnosed with hyperglycemia in pregnancy, with a detection rate of 3.9% (30/774). Statistically significant differences in serum total cholesterol (TC), TG, low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels were identified when comparing different non-fasting TyG groups (all P values <0.05). Subsequent trend test analysis indicated that the levels of TC, TG, LDL-C, and PG gradually increased with elevated the non-fasting TyG index ( Ftrend TC=95.61, P<0.001; Ftrend TG=1 051.91, P<0.001; Ftrend LDL-C = 97.20, P < 0.001; Ftrend TG=195.20; P<0.001). After adjustment for maternal age, pre-delivery BMI, altitude, TC, LDL-C, and HDL-C, multivariate Logistic regression models revealed independent positive associations between non-fasting TyG index and hyperglycemia in pregnancy (Model 1: OR=2.72, 95% CI: 1.13-6.53, P=0.026; Model 2: OR=2.56, 95% CI: 1.01-6.50, P=0.048; Model 3: OR=2.72, 95% CI: 1.06-6.97, P=0.037; Model 4: OR=4.02, 95% CI: 1.42-11.40, P=0.009) and the incident of hyperglycemia in pregnancy showed an increasing tendency as increasing with the non-fasting TyG index, however, this association did not statistical significance (P trend >0.05). Curve fitting by restricted cubic splines (RCS) were used to assess linearity between non-fasting TyG and hyperglycemia in pregnancy, and there was a linear dose-response relationship between non-fasting TyG and hyperglycemia in pregnancy (P for non-linear = 0.515). ConclusionNon-fasting TyG index in the third trimester is a risk factor for hyperglycemia in pregnancy among the Tibetan singleton pregnant women at high altitudes and there was a possible linear dose-response relationship between the non-fasting TyG index and hyperglycemia in pregnancy.
5.UPLC-Q-TOF-MS combined with network pharmacology reveals effect and mechanism of Gentianella turkestanorum total extract in ameliorating non-alcoholic steatohepatitis.
Wu DAI ; Dong-Xuan ZHENG ; Ruo-Yu GENG ; Li-Mei WEN ; Bo-Wei JU ; Qiang HOU ; Ya-Li GUO ; Xiang GAO ; Jun-Ping HU ; Jian-Hua YANG
China Journal of Chinese Materia Medica 2025;50(7):1938-1948
This study aims to reveal the effect and mechanism of Gentianella turkestanorum total extract(GTI) in ameliorating non-alcoholic steatohepatitis(NASH). UPLC-Q-TOF-MS was employed to identify the chemical components in GTI. SwissTarget-Prediction, GeneCards, OMIM, and TTD were utilized to screen the targets of GTI components and NASH. The common targets shared by GTI components and NASH were filtered through the STRING database and Cytoscape 3.9.0 to identify core targets, followed by GO and KEGG enrichment analysis. AutoDock was used for molecular docking of key components with core targets. A mouse model of NASH was established with a methionine-choline-deficient high-fat diet. A 4-week drug intervention was conducted, during which mouse weight was monitored, and the liver-to-brain ratio was measured at the end. Hematoxylin-eosin staining, Sirius red staining, and oil red O staining were employed to observe the pathological changes in the liver tissue. The levels of various biomarkers, including aspartate aminotransferase(AST), alanine aminotransferase(ALT), hydroxyproline(HYP), total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol(HDL-C), malondialdehyde(MDA), superoxide dismutase(SOD), and glutathione(GSH), in the serum and liver tissue were determined. RT-qPCR was conducted to measure the mRNA levels of interleukin 1β(IL-1β), interleukin 6(IL-6), tumor necrosis factor α(TNF-α), collagen type I α1 chain(COL1A1), and α-smooth muscle actin(α-SMA). Western blotting was conducted to determine the protein levels of IL-1β, IL-6, TNF-α, and potential drug targets identified through network pharmacology. UPLC-Q-TOF/MS identified 581 chemical components of GTI, and 534 targets of GTI and 1 157 targets of NASH were screened out. The topological analysis of the common targets shared by GTI and NASH identified core targets such as IL-1β, IL-6, protein kinase B(AKT), TNF, and peroxisome proliferator activated receptor gamma(PPARG). GO and KEGG analyses indicated that the ameliorating effect of GTI on NASH was related to inflammatory responses and the phosphoinositide 3-kinase(PI3K)/AKT pathway. The staining results demonstrated that GTI ameliorated hepatocyte vacuolation, swelling, ballooning, and lipid accumulation in NASH mice. Compared with the model group, high doses of GTI reduced the AST, ALT, HYP, TC, and TG levels(P<0.01) while increasing the HDL-C, SOD, and GSH levels(P<0.01). RT-qPCR results showed that GTI down-regulated the mRNA levels of IL-1β, IL-6, TNF-α, COL1A1, and α-SMA(P<0.01). Western blot results indicated that GTI down-regulated the protein levels of IL-1β, IL-6, TNF-α, phosphorylated PI3K(p-PI3K), phosphorylated AKT(p-AKT), phosphorylated inhibitor of nuclear factor kappa B alpha(p-IκBα), and nuclear factor kappa B(NF-κB)(P<0.01). In summary, GTI ameliorates inflammation, dyslipidemia, and oxidative stress associated with NASH by regulating the PI3K/AKT/NF-κB signaling pathway.
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Mice
;
Network Pharmacology
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Chromatography, High Pressure Liquid
;
Liver/metabolism*
;
Mice, Inbred C57BL
;
Humans
;
Mass Spectrometry
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Molecular Docking Simulation
6.Material basis of bitter taste and taste-effect relationship in Cistanche deserticola based on UPLC-Q-Orbitrap HRMS combined with molecular docking.
Li-Ying TIAN ; Ming-Jie LI ; Qiang HOU ; Zheng-Yuan WANG ; Ai-Sai-Ti GULIZIYE ; Jun-Ping HU
China Journal of Chinese Materia Medica 2025;50(6):1569-1580
Based on ultra-performance liquid chromatography-quadrupole-electrostatic field Orbitrap high-resolution mass spectrometry(UPLC-Q-Orbitrap HRMS) technology and molecular docking, the bitter-tasting substances(hereafter referred to as "bitter substances") in Cistanche deserticola extract were investigated, and the bitter taste and efficacy relationship was explored to lay the foundation for future research on de-bittering and taste correction. Firstly, UPLC-Q-Orbitrap HRMS was used for the qualitative analysis of the constituents of C. deserticola, and 69 chemical components were identified. These chemical components were then subjected to molecular docking with the bitter taste receptor, leading to the screening of 20 bitter substances, including 6 phenylethanol glycosides, 5 flavonoids, 3 phenolic acids, 2 cycloalkenyl ether terpenes, 2 alkaloids, and 2 other components. Nine batches of fresh C. deserticola samples were collected from the same origin but harvested at different months. These samples were divided into groups based on harvest month and plant part. The bitterness was quantified using an electronic tongue, and the content of six potential bitter-active compounds(pineconotyloside, trichothecene glycoside, tubulin A, iso-trichothecene glycoside, jinshihuaoside, and jingnipinoside) was determined by high-performance liquid chromatography(HPLC). The total content of phenylethanol glycosides, polysaccharides, alkaloids, flavonoids, and phenolic acids was determined using UV-visible spectrophotometry. Chemometric analyses were then conducted, including Pearson's correlation analysis, gray correlation analysis, and orthogonal partial least squares discriminant analysis(OPLS-DA), to identify the bitter components in C. deserticola. The results were consistent with the molecular docking findings, and the two methods mutually supported each other. Finally, network pharmacological predictions and analyses were performed to explore the relationship between the targets of bitter substances and their efficacy. The results indicated that key targets of the bitter substances included EGFR, PIK3CB, and PTK2. These substances may exert their bitter effects by acting on relevant disease targets, confirming that the bitter substances in C. deserticola are the material basis of its bitter taste efficacy. In conclusion, this study suggests that the phenylethanol glycosides, primarily pineconotyloside, mauritiana glycoside, and gibberellin, are the material basis for the "bitter taste" of C. deserticola. The molecular docking technique plays a guiding role in the screening of bitter substances in traditional Chinese medicine(TCM). The bitter substances in C. deserticola not only contribute to its bitter taste but also support the concept of the "taste-efficacy" relationship in TCM, providing valuable insights and references for future research in this area.
Molecular Docking Simulation
;
Taste
;
Chromatography, High Pressure Liquid
;
Cistanche/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Mass Spectrometry
7.Two new taraxerane triterpenoids from mastic.
Zhi-Qiang ZHAO ; Xue-Rui AN ; Tian-Zhi LI ; Ting HE ; Hao-Kun HOU ; Wei LIU ; Tao YUAN
China Journal of Chinese Materia Medica 2025;50(13):3723-3743
Three taraxerane nortriterpenoids were isolated from mastic by using various modern chromatographic separation techniques. They were identified as(5R,8R,9R,10S,11S,12R,13S,17R,18R)-28-norlupa-11,12-epoxy-14-taraxerene-3,16-dione(1),(5R,8R,9R,10S,11S,12R,13S,17S,18S)-17-hydroxy-28-norlupa-11,12-epoxy-14-taraxerene-3-one(2), and(5R,8R,9R,10R,11S,12R,13R,14S,17S,18S)-14,17-epoxy-28-norlupa-11,12-oxidotaraxerone(3) through the high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), infrared(IR), ultraviolet(UV), nuclear magnetic resonance(NMR), and single-crystal X-ray diffraction techniques as well as comparison with literature data. Compounds 1-3 were C-28 nortriterpenoids and isolated from mastic for the first time, and compounds 1-2 were new ones. In the model for RAW264.7 cell anti-inflammation induced by lipopolysaccharide(LPS), compound 1 demonstrates an inhibitory effect on nitric oxide(NO) [IC_(50)=(13.38±0.68) μmol·L~(-1)], comparable to the activity of the positive control dexamethasone [IC_(50)=(14.59±1.49) μmol·L~(-1)]. Compounds 2 and 3 exhibit weaker inhibitory effects, with IC_(50) values of(24.17±2.56) and(22.25±2.84) μmol·L~(-1), respectively.
Animals
;
Mice
;
Triterpenes/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
;
Mastic Resin/chemistry*
;
Nitric Oxide
;
Molecular Structure
;
Macrophages/immunology*
;
RAW 264.7 Cells
8.Three-dimensional human-robot mechanics modeling for dual-arm nursing-care robot transfer based on individualized musculoskeletal multibody dynamics.
Zhiqiang YANG ; Funing HOU ; Qiang LIN ; Jiexin XIE ; Hao LU ; Shijie GUO
Journal of Biomedical Engineering 2025;42(1):96-104
During transfer tasks, the dual-arm nursing-care robot require a human-robot mechanics model to determine the balance region to support the patient safely and stably. Previous studies utilized human-robot two-dimensional static equilibrium models, ignoring the human body volume and muscle torques, which decreased model accuracy and confined the robot ability to adjust the patient's posture in three-dimensional spatial. Therefore, this study proposes a three-dimensional spatial mechanics modeling method based on individualized human musculoskeletal multibody dynamics. Firstly, based on the mechanical features of dual-arm support, this study constructed a foundational three-dimensional human-robot mechanics model including body posture, contact position and body force. With the computed tomography data from subjects, a three-dimensional femur-pelvis-sacrum model was reconstructed, and the individualized musculoskeletal dynamics was analyzed using the ergonomics software, which derived the human joint forces and completed the mechanic model. Then, this study established a dual-arm robot transfer platform to conduct subject transfer experiments, showing that the constructed mechanics model possessed higher accuracy than previous methods. In summary, this study provides a three-dimensional human-robot mechanics model adapting to individual transfers, which has potential application in various scenarios such as nursing-care and rehabilitating robots.
Humans
;
Robotics
;
Biomechanical Phenomena
;
Posture
;
Imaging, Three-Dimensional
;
Nursing Care
9.Reduction in mitochondrial DNA methylation leads to compensatory increase in mitochondrial DNA content: novel blood-borne biomarkers for monitoring occupational noise.
Jia-Hao YANG ; Zhuo-Ran LI ; Zhuo-Zhang TAN ; Wu-Zhong LIU ; Qiang HOU ; Pin SUN ; Xue-Tao ZHANG
Environmental Health and Preventive Medicine 2025;30():40-40
BACKGROUND:
Prolonged occupational noise exposure poses potential health risks, but its impact on mitochondrial DNA (mtDNA) damage and methylation patterns remains unclear.
METHOD:
We recruited 306 factory workers, using average binaural high-frequency hearing thresholds from pure-tone audiometry to assess noise exposure. MtDNA damage was evaluated through mitochondrial DNA copy number (mtDNAcn) and lesion rate, and mtDNA methylation changes were identified via pyrophosphate sequencing.
RESULTS:
There was a reduction in MT-RNR1 methylation of 4.52% (95% CI: -7.43% to -1.62%) among workers with abnormal hearing, whereas changes in the D-loop region were not statistically significant (β = -2.06%, 95% CI: -4.44% to 0.31%). MtDNAcn showed a negative association with MT-RNR1 methylation (β = -0.95, 95% CI: -1.23 to -0.66), while no significant link was found with D-loop methylation (β = -0.05, 95% CI: -0.58 to 0.48). Mediation analysis indicated a significant increase in mtDNAcn by 10.75 units (95% CI: 3.00 to 21.26) in those with abnormal hearing, with MT-RNR1 methylation mediating 35.9% of this effect.
CONCLUSIONS
These findings suggest that occupational noise exposure may influence compensatory increases in mtDNA content through altered MT-RNR1 methylation.
Humans
;
DNA, Mitochondrial
;
DNA Methylation
;
Male
;
Adult
;
Noise, Occupational/adverse effects*
;
Middle Aged
;
Occupational Exposure/adverse effects*
;
Biomarkers/blood*
;
Female
10.Default mode network analysis associated with memory impairment in acute mild traumatic brain injury
Zhe ZENG ; Lin LUO ; Qiang CHEN ; Siqi HOU ; Shengzhe JIANG
The Journal of Practical Medicine 2024;40(10):1412-1417
Objective To observe the changes of memory function in patients with mild traumatic brain injury(mTBI),and to explore the correlation between functional connection(FC)changes and montreal cognitive assessment(MoCA)scale scores in the mTBI cohort.Methods Thirty-nine patients with acute mTBI and 39 healthy controls were prospectively collected.All subjects underwent rs-fMRI scans,and FC values were calculated in both groups.Results Compared with healthy controls,the FC of the left posterior cingulate cortex,the left cuneus and the right calcarine fissure were enhanced.The FC of the left orbital superior frontal gyrus with the right superior temporal gyrus and the right postcentral gyrus was enhanced,and the FC of the right parahippocampal gyrus with the right medial and lateral cingulate gyrus,right thalamus and right caudate nucleus was weakened.Correlation analysis showed that there was no significant correlation between MoCA scale score and FC based on DMN network nodes.Conclusion The DMN network was damaged in patients with acute mTBI,and the memory function was impaired.In addition,no correlation was found between FC abnormalities and MoCA scale scores in this study

Result Analysis
Print
Save
E-mail