1.Effect of targeted silencing of DNMT3A on collagen deposition, proliferation and migration activity of mouse lung fibroblasts
Xianchen Wang ; Junbo You ; Hui Ling ; Jiahao Fan ; Qi Chen ; Hui Tao ; Jiming Sha
Acta Universitatis Medicinalis Anhui 2025;60(1):66-72
Objective:
To investigate the effect of targeted silencing of DNA methyltransferase 3A(DNMT3A) on collagen deposition, proliferation and migration activity of mouse lung fibroblasts(PFs).
Methods:
In order to ensure the proliferation and migration activity of primary fibroblasts, the lung tissues of neonatal C57 suckling mice were taken, PFs were extracted after being sheared, and the morphology was observed and identified under the microscope. PFs cells were activated by 5 ng/ml TGF-β1for 24 h after cell attachment, and DNMT3A silencing model was constructed by small interfering RNA; The experiment was divided into control group, TGF-β1group, TGF-β1+ siRNA-NC group and TGF-β1+ siRNA-DNMT3A group. The protein expressions of DNMT3A, α-smooth muscle actin(α-SMA) and Collagen Ⅰ were detected by Western blot; Real time quantitative reverse transcription polymerase chain reaction(RT-qPCR) was used to detect the mRNA expression changes ofDNMT3A,α-SMAandCollagenⅠ. The proliferation ability of PFs was detected by CCK-8 and EdU staining; the migration ability of PFs was detected by scratch test and Transwell migration test.
Results:
Compared with the control group, TGF-β1induced the increase of DNMT3A in the activated PFs cell group(P<0.01), the protein and mRNA levels of fibrosis and proliferation related indicators α-SMA and Collagen Ⅰ also increased(allP<0.05), and the proliferation and migration ability of PFs increased(allP<0.000 1). Compared with the siRNA-NC group, the protein expression levels of DNMT3A(P<0.000 1) and related indicators α-SMA(P<0.01) and Collagen Ⅰ(P<0.01) significantly decreased in the DNMT3A silencing group by Western blot, and the mRNA levels ofDNMT3A,α-SMAandCollagenⅠby RT-qPCR also decreased(allP<0.001), and the proliferation(P<0.01) and migration ability(P<0.05) of PFs cells decreased compared with the control group.
Conclusion
Silencing DNMT3A can inhibit the deposition of collagen and the proliferation of PFs. DNMT3A can promote the proliferation and migration of PFs, and then promote the activation of PFs and the development of pulmonary fibrosis. This process may be regulated by DNA methylation modification.
2.Effects of long working hours, shift rotation, and job stress on work-related musculoskeletal disorders among key occupational populations in Yunnan Province
Jun QI ; Jingjing CAO ; Meifeng ZHOU ; Ke ZHU ; Xingren LIU ; Linbo FAN
Journal of Environmental and Occupational Medicine 2025;42(3):302-309
Background The adverse effects of long working hours, shift rotation, and job stress on the physical and mental health of occupational populations require urgent attention. Objective To investigate and compare the positive rates of WMSDs between different industries, analyze the exposure status of long working hours, shift rotation, and job stress among key occupational groups, and evaluate the impacts of these factors on WMSDs in the manufacturing and service industries. Methods The study subjects were derived from key occupational populations in Yunnan Province, recruited by the Chinese National Occupational Health Literacy Monitoring Survey in 2022. A cross-sectional design was used for this survey. The key occupational populations were recruited from the secondary industry (manufacturing industry, metal mining and beneficiation industry, and non-metal mining and beneficiation industry) by stratified random sampling and from the tertiary industry (medical and healthcare industry, education industry, environmental sanitation industry, transportation industry, and express/takeaway delivery industry) by proportional probability sampling, and
3.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine.
4.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
5.Correlation between bedtime screen use behavior and sleep health among fourth and fifth grade primary school students
ZHU Guiyin, ZHU Fan, QI Tiantian, GUO Shihao, YANG Shuang, MA Yinghua
Chinese Journal of School Health 2025;46(4):548-551
Objective:
To investigate the association between bedtime screen use and sleep health among fourth and fifthgrade primary school students, so as to provide evidence to support interventions for improving sleep quality.
Methods:
From April to June 2024, a survey was conducted among 4 232 fourth and fifthgrade students from nine primary schools in a district of Beijing. A selfdesigned questionnaire assessed bedtime screen use behavior and sleep health indicators. Generalized linear models and Logistic regression were used to analyze the associations.
Results:
Among the surveyed students, 28.3% reported bedtime screen use. Mean sleep duration every day was (9.31±0.90) hours on school days and (10.08±1.36) hours on weekends. Compared to nonusers, students with bedtime screen use exhibited every day: later bedtimes on school days (10.18 min delay, 95%CI=6.88-13.47) and weekends (22.09 min delay, 95%CI=17.33-26.85) (P<0.05); later weekend wake times (7.97 min delay, 95%CI=1.78-14.16, P<0.05); reduced sleep duration on school days (-9.82 min, 95%CI=-13.62 to -6.03) and weekends (-14.12 min, 95%CI=-20.24 to -8.00) (P<0.05); greater weekend-school day bedtime discrepancy (β=1.15, 95%CI=1.08-1.23, P<0.01). Additionally, they had lower odds of falling asleep within 20 minutes (OR=0.62, 95%CI=0.54-0.72), daytime alertness (OR=0.66, 95%CI=0.56-0.77), and subjective sleep satisfaction (OR=0.57, 95%CI=0.49-0.66)(P<0.01).
Conclusions
Bedtime screen use is associated with adverse effects on multiple dimensions of sleep health in primary school students. Reducing screen exposure before bed may help improve their sleep quality.
6.Tanreqing Capsules protect lung and gut of mice infected with influenza virus via "lung-gut axis".
Nai-Fan DUAN ; Yuan-Yuan YU ; Yu-Rong HE ; Feng CHEN ; Lin-Qiong ZHOU ; Ya-Lan LI ; Shi-Qi SUN ; Yan XUE ; Xing ZHANG ; Gui-Hua XU ; Yue-Juan ZHENG ; Wei ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2270-2281
This study aims to explore the mechanism of lung and gut protection by Tanreqing Capsules on the mice infected with influenza virus based on "the lung-gut axis". A total of 110 C57BL/6J mice were randomized into control group, model group, oseltamivir group, and low-and high-dose Tanreqing Capsules groups. Ten mice in each group underwent body weight protection experiments, and the remaining 12 mice underwent experiments for mechanism exploration. Mice were infected with influenza virus A/Puerto Rico/08/1934(PR8) via nasal inhalation for the modeling. The lung tissue was collected on day 3 after gavage, and the lung tissue, colon tissue, and feces were collected on day 7 after gavage for subsequent testing. The results showed that Tanreqing Capsules alleviated the body weight reduction and increased the survival rate caused by PR8 infection. Compared with model group, Tanreqing Capsules can alleviate the lung injury by reducing the lung index, alleviating inflammation and edema in the lung tissue, down-regulating viral gene expression at the late stage of infection, reducing the percentage of neutrophils, and increasing the percentage of T cells. Tanreqing Capsules relieved the gut injury by restoring the colon length, increasing intestinal lumen mucin secretion, alleviating intestinal inflammation, and reducing goblet cell destruction. The gut microbiota analysis showed that Tanreqing Capsules increased species diversity compared with model group. At the phylum level, Tanreqing Capsules significantly increased the abundance of Firmicutes and Actinobacteria, while reducing the abundance of Bacteroidota and Proteobacteria to maintain gut microbiota balance. At the genus level, Tanreqing Capsules significantly increased the abundance of unclassified_f_Lachnospiraceae while reducing the abundance of Bacteroides, Eubacterium, and Phocaeicola to maintain gut microbiota balance. In conclusion, Tanreqing Capsules can alleviate mouse lung and gut injury caused by influenza virus infection and restore the balance of gut microbiota. Treating influenza from the lung and gut can provide new ideas for clinical practice.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Lung/metabolism*
;
Mice, Inbred C57BL
;
Capsules
;
Orthomyxoviridae Infections/virology*
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Humans
;
Female
;
Influenza A virus/physiology*
;
Influenza, Human/virology*
7.Transcriptome analysis and catechin synthesis genes in different organs of Spatholobus suberectus.
Wei-Qi QIN ; Quan LIN ; Ying LIANG ; Fan WEI ; Gui-Li WEI ; Qi GAO ; Shuang-Shuang QIN
China Journal of Chinese Materia Medica 2025;50(12):3297-3306
To study the differences in transcript levels among different organs of Spatholobus suberectus and to explore the genes encoding enzymes related to the catechin biosynthesis pathway, this study utilized the genome and full-length transcriptome data of S. suberectus as references. Transcriptome sequencing and bioinformatics analysis were performed on five different organs of S. suberectus-roots, stems, leaves, flowers, and fruits-using the Illumina NovaSeq 6000 platform. A total of 115.28 Gb of clean data were obtained, with GC content values ranging from 45.19% to 47.54%, Q20 bases at 94.17% and above, and an overall comparison rate with the reference genome around 90%. In comparisons between the stem and root, stem and leaf, stem and flower, and stem and fruit, 10 666, 9 674, 9 320, and 5 896 differentially expressed genes(DEGs) were identified, respectively. The lowest number of DEGs was found in the stem and root comparison group. KEGG enrichment analysis revealed that the DEGs were mainly concentrated in the pathways of phytohormone signaling, phenylalanine biosynthesis, etc. A total of 39 genes were annotated in the catechin biosynthesis pathway, with at least one highly expressed gene found in all organs. Among these, PAL1, PAL2, C4H1, C4H3, 4CL1, 4CL2, and DFR2 showed high expression in the stems, suggesting that they may play important roles in the biosynthesis of flavonoids in S. suberectus. This study aims to provide important information for the in-depth exploration of the regulation of catechin biosynthesis in S. suberectus through transcriptome analysis of its different organs and to provide a reference for the further realization of S. suberectus varietal improvement and molecular breeding.
Catechin/biosynthesis*
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Fabaceae/metabolism*
;
Transcriptome
;
Flowers/metabolism*
;
Plant Stems/metabolism*
;
Plant Leaves/metabolism*
;
Plant Roots/metabolism*
;
Fruit/metabolism*
8.Mechanism of Jiming Powder in improving mitophagy for treatment of myocardial infarction based on PINK1-Parkin pathway.
Xin-Yi FAN ; Xiao-Qi WEI ; Wang-Jing CHAI ; Kuo GAO ; Fang-He LI ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2025;50(12):3346-3355
In the present study, a mouse model of coronary artery ligation was employed to evaluate the effects of Jiming Powder on mitophagy in the mouse model of myocardial infarction and elucidate its underlying mechanisms. A mouse model of myocardial infarction post heart failure was constructed by ligating the left anterior descending branch of the coronary artery. The therapeutic efficacy of Jiming Powder was assessed from multiple perspectives, including ultrasonographic imaging, hematoxylin-eosin(HE) staining, Masson staining, and serum cardiac enzyme profiling. Dihydroethidium(DHE) staining was employed to evaluate the oxidative stress levels in the hearts of mice from each group. Mitophagy levels were assessed by scanning electron microscopy and immunofluorescence co-localization. Western blot was employed to determine the levels of key proteins involved in mitophagy, including Bcl-2-interacting protein beclin 1(BECN1), sequestosome 1(SQSTM1), microtubule-associated protein 1 light chain 3 beta(LC3B), PTEN-induced putative kinase 1(PINK1), phospho-Parkinson disease protein(p-Parkin), and Parkinson disease protein(Parkin). The results demonstrated that compared with the model group, high and low doses of Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVIDs) and left ventricular internal diameter in diastole(LVIDd) and markedly improved the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improving the cardiac function in post-myocardial infarction mice. Jiming Powder effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactate dehydrogenase(LDH), thereby protecting ischemic myocardium. HE staining revealed that Jiming Powder attenuated inflammatory cell infiltration after myocardial infarction. Masson staining indicated that Jiming Powder effectively inhibited ventricular remodeling. Western blot results showed that Jiming Powder activated the PINK1-Parkin pathway, up-regulated the protein level of BECN1, down-regulated the protein level of SQSTM1, and increased the LC3Ⅱ/LC3Ⅰ ratio to promote mitophagy. In conclusion, Jiming Powder exerts therapeutic effects on myocardial infarction by inhibiting ventricular remodeling. The findings pave the way for subsequent pharmacological studies on the active components of Jiming Powder.
Animals
;
Myocardial Infarction/physiopathology*
;
Mitophagy/drug effects*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Protein Kinases/genetics*
;
Male
;
Ubiquitin-Protein Ligases/genetics*
;
Humans
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
9.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
10.Mechanism of Jiming Powder in inhibiting ferroptosis in treatment of myocardial infarction based on NRF2/HO-1/GPX4 pathway.
Xin-Yi FAN ; Xiao-Qi WEI ; Wang-Jing CHAI ; Fang-He LI ; Kuo GAO ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2025;50(11):3108-3116
This study employed a mouse model of coronary artery ligation to assess the effect and mechanism of Jiming Powder on mitochondrial autophagy in mice with myocardial infarction. The mouse model of heart failure post-myocardial infarction was established by ligating the left anterior descending coronary artery. The pharmacological efficacy of Jiming Powder was evaluated through echocardiographic imaging, hematoxylin-eosin(HE) staining, and Masson staining. The levels of malondialdehyde(MDA), Fe~(2+), reduced glutathione(GSH), and superoxide dismutase(SOD) in heart tissues, as well as MDA immunofluorescence of heart tissues, were measured to assess lipid peroxidation and Fe~(2+) levels in the hearts of mice in different groups. Ferroptosis levels in the groups were evaluated using scanning electron microscopy and Prussian blue staining. Western blot analysis was conducted to detect the levels of key ferroptosis-related proteins, including nuclear factor erythroid 2-related factor 2(NRF2), ferritin heavy chain(FTH), glutathione peroxidase 4(GPX4), solute carrier family 7 member 11(SLC7A11), heme oxygenase 1(HO-1), and Kelch-like ECH-associated protein 1(KEAP1). The results showed that compared with the model group, both the high-and low-dose Jiming Powder groups exhibited significantly reduced left ventricular internal diameter in systole(LVIDs) and left ventricular internal diameter in diastole(LVIDd), while the left ventricular ejection fraction(EF) and left ventricular fractional shortening(FS) were significantly improved, effectively enhancing cardiac function in mice post-myocardial infarction. HE staining revealed that Jiming Powder attenuated myocardial inflammatory cell infiltration post-infarction, and Masson staining indicated that Jiming Powder effectively reduced fibrosis in the infarct margin area. Treatment with Jiming Powder reduced the levels of MDA and Fe~(2+), indicators of lipid peroxidation post-myocardial infarction, while increasing GSH and SOD levels, thus protecting ischemic myocardium. Western blot results demonstrated that Jiming Powder reduced KEAP1 protein accumulation, activated the NRF2/HO-1/GPX4 pathway, and up-regulated the protein expression of FTH and SLC7A11, exerting an inhibitory effect on ferroptosis. This study reveals that Jiming Powder exerts a therapeutic effect on myocardial infarction by inhibiting ferroptosis through the NRF2/HO-1/GPX4 pathway, providing a foundation for subsequent research on the pharmacological effects of Jiming Powder.
Animals
;
Ferroptosis/drug effects*
;
Myocardial Infarction/physiopathology*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Heme Oxygenase-1/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Humans
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Disease Models, Animal


Result Analysis
Print
Save
E-mail