1.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
2.Exploration on Mechanism of Topical Treatment of Allergic Contact Dermatitis in Mice with Portulacae Herba Based on Nrf2/HO-1/NF-κB Signaling Pathway
Xiaoxue WANG ; Guanwei FAN ; Xiang PU ; Zhongzhao ZHANG ; Xia CHEN ; Ying TANG ; Nana WU ; Jiangli LUO ; Xiangyan KONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):115-123
ObjectiveTo investigate the mechanism of topical treatment of allergic contact dermatitis (ACD) mice with Portulacae Herba based on the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/nuclear factor-κB (NF-κB) signaling pathway. MethodsA total of 70 6-week-old specific pathogen free (SPF) female Kunming mice were adaptively fed for 1 week and randomly divided into blank group, model group, compound dexamethasone acetate cream group (2.075×10-2 g·g-1), blank matrix cream group, low-dose Portulacae Herba cream group (0.1 g·g-1), high-dose Portulacae Herba cream group (0.2 g·g-1), and Portulacae Herba + inhibitor group (0.2 g·g-1 + 30 mg·kg-1 ML385), with 10 mice in each group. One day before the experiment, the mice were shaved on the neck and back. Except for the blank group, the mice in the other groups were treated with 2,4-dinitrochlorobenzene (DNCB) to establish an ACD model. After respective administration, the skin lesion of the mice was scored, and the histopathological changes of the skin were stained with hematoxylin-eosin (HE). Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), reactive oxygen species (ROS), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) in serum of mice. The expression of Nrf2/HO-1/NF-κB signaling pathway-related proteins in mouse skin tissue was detected by immunohistochemistry (IHC), Western blot, and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the blank group, the mice in the model group had an increased skin lesion score (P<0.01), severe pathological damage to skin tissue, increased content of IL-1β, IL-6, ROS, and MDA in their serum (P<0.01), and decreased content of SOD (P<0.01). In addition, the mRNA and protein expression levels of Nrf2, HO-1, and nuclear factor-κB inhibitor α (IκBα) in skin tissue were up-regulated (P<0.01), while the protein expression levels of phosphorylated (p)-IκBα and p-NF-κB p65 and the mRNA expression of NF-κB p65 were down-regulated (P<0.01). Compared with the model group and the blank matrix cream group, the mice treated with Portulacae Herba had a decreased skin lesion score (P<0.01), reduced pathological damage to skin tissue, decreased content of IL-1β, IL-6, ROS, and MDA in their serum (P<0.01), and increased content of SOD (P<0.01). Additionally, the mRNA and protein expression levels of Nrf2, HO-1, and IκBα in skin tissue were down-regulated (P<0.05,P<0.01), and the protein expression levels of p-IκBα and p-NF-κB p65 and the mRNA expression of NF-κB p65 were up-regulated (P<0.05,P<0.01). Compared with the Portulacae Herba + inhibitor group, the high-dose Portulacae Herba cream group had a decreased skin lesion score (P<0.01), alleviated pathological damage to skin tissue, decreased content of IL-1β, IL-6, ROS, and MDA in the serum of mice (P<0.05,P<0.01), and increased content of SOD (P<0.01). The protein expression levels of Nrf2, HO-1, and IκBα and the mRNA expression of Nrf2 and HO-1 in skin tissue were up-regulated (P<0.05,P<0.01), and the protein expression levels of p-IκBα and p-NF-κB p65 and the mRNA expression of NF-κB p65 were down-regulated (P<0.05). ConclusionPortulacae Herba can improve DNCB-induced ACD skin damage in mice by regulating the Nrf2/HO-1/NF-κB signaling pathway.
3.Mechanism of Paeonol in Alleviating Alcohol-induced Liver Injury in Mice Through Regulating SCFAs-GPR43/MAPK Signaling Pathway Mediated by Intestinal Flora
Shengnan JIANG ; Qifeng WU ; Zining WANG ; Hao PU ; Guiming YAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):129-139
ObjectiveTo investigate the ameliorative effect of paeonol on acute alcohol-induced hepatic inflammation in mice via the regulation of the short-chain fatty acids (SCFAs)-specific receptor GPR43/mitogen-activated protein kinase (MAPK) signaling pathway. MethodsC57BL/6 mice were randomly divided into five groups: blank control group, model group, low-dose paeonol group (120 mg·kg-1), high-dose paeonol group (480 mg·kg-1), and silybin group (36.8 mg·kg-1). A mouse model of alcohol-induced liver disease (ALD) was established by ad libitum administration of a Lieber-DeCarli alcohol liquid diet. Serum lipid levels, liver function, inflammatory cytokines, and oxidative stress markers were measured. Liver hematoxylin-eosin (HE) staining and Oil Red O staining were performed to validate successful modeling. Western blot analysis was used to assess the expression levels of zonula occludens-1 (ZO-1), Claudin-1, and proteins related to the GPR43/MAPK signaling pathway in the colonic tissue. Immunohistochemistry was employed to detect the protein expression of GPR43, ZO-1, and Claudin-1 in the colon. Then 16S rDNA sequencing was performed to analyze differences in intestinal flora between the model group and the high-dose paeonol group. Additionally, fecal microbiota transplantation (FMT) experiments were conducted to validate the regulatory effect of paeonol on ALD via modulation of intestinal flora. ResultsCompared with the blank control group, the model group showed significantly elevated serum lipid levels, oxidative stress, and inflammatory cytokine expression (P<0.01). Liver histology revealed increased inflammatory infiltration and lipid droplet accumulation. Colonic mucosal injury and impaired intestinal barrier function were observed. Levels of MAPK pathway-related proteins in the colonic tissue were upregulated (P<0.01), while GPR43, ZO-1, and Claudin-1 protein expression levels were significantly decreased (P<0.01). The composition and abundance of the intestinal flora were markedly altered, with a reduced Bacteroidetes-to-Firmicutes ratio and decreased relative abundances of Eubacterium, Parabacteroides, Erysipelothrix, and Adlercreutzia, alongside increased abundances of Clostridium butyricum, Enterococcus, and Helicobacter pylori in the model group. Compared with the model group, paeonol significantly reduced serum lipid levels, oxidative stress responses, and the expression of inflammatory cytokines in ALD mice (P<0.05, P<0.01). It also attenuated hepatic lipid accumulation, restored intestinal barrier function, and repaired the structural integrity of liver and colonic tissues. The protein expression levels of ZO-1, Claudin-1, and GPR43 in the colonic tissue were significantly increased (P<0.05, P<0.01), while those of MAPK pathway-related proteins were significantly decreased (P<0.05, P<0.01). The intestinal flora dysbiosis was effectively alleviated, rendering its composition closer to that of normal mice. The efficacy of paeonol in modulating ALD was further confirmed by FMT experiments, supporting its mechanistic involvement in the SCFAs-GPR43/MAPK signaling pathway. ConclusionPaeonol exerts a protective effect against ALD in mice, which may be mediated through regulation of the SCFAs-GPR43/MAPK signaling pathway, thereby achieving anti-inflammatory effects and improving intestinal barrier function.
4.Mechanism of Paeonol in Alleviating Alcohol-induced Liver Injury in Mice Through Regulating SCFAs-GPR43/MAPK Signaling Pathway Mediated by Intestinal Flora
Shengnan JIANG ; Qifeng WU ; Zining WANG ; Hao PU ; Guiming YAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):129-139
ObjectiveTo investigate the ameliorative effect of paeonol on acute alcohol-induced hepatic inflammation in mice via the regulation of the short-chain fatty acids (SCFAs)-specific receptor GPR43/mitogen-activated protein kinase (MAPK) signaling pathway. MethodsC57BL/6 mice were randomly divided into five groups: blank control group, model group, low-dose paeonol group (120 mg·kg-1), high-dose paeonol group (480 mg·kg-1), and silybin group (36.8 mg·kg-1). A mouse model of alcohol-induced liver disease (ALD) was established by ad libitum administration of a Lieber-DeCarli alcohol liquid diet. Serum lipid levels, liver function, inflammatory cytokines, and oxidative stress markers were measured. Liver hematoxylin-eosin (HE) staining and Oil Red O staining were performed to validate successful modeling. Western blot analysis was used to assess the expression levels of zonula occludens-1 (ZO-1), Claudin-1, and proteins related to the GPR43/MAPK signaling pathway in the colonic tissue. Immunohistochemistry was employed to detect the protein expression of GPR43, ZO-1, and Claudin-1 in the colon. Then 16S rDNA sequencing was performed to analyze differences in intestinal flora between the model group and the high-dose paeonol group. Additionally, fecal microbiota transplantation (FMT) experiments were conducted to validate the regulatory effect of paeonol on ALD via modulation of intestinal flora. ResultsCompared with the blank control group, the model group showed significantly elevated serum lipid levels, oxidative stress, and inflammatory cytokine expression (P<0.01). Liver histology revealed increased inflammatory infiltration and lipid droplet accumulation. Colonic mucosal injury and impaired intestinal barrier function were observed. Levels of MAPK pathway-related proteins in the colonic tissue were upregulated (P<0.01), while GPR43, ZO-1, and Claudin-1 protein expression levels were significantly decreased (P<0.01). The composition and abundance of the intestinal flora were markedly altered, with a reduced Bacteroidetes-to-Firmicutes ratio and decreased relative abundances of Eubacterium, Parabacteroides, Erysipelothrix, and Adlercreutzia, alongside increased abundances of Clostridium butyricum, Enterococcus, and Helicobacter pylori in the model group. Compared with the model group, paeonol significantly reduced serum lipid levels, oxidative stress responses, and the expression of inflammatory cytokines in ALD mice (P<0.05, P<0.01). It also attenuated hepatic lipid accumulation, restored intestinal barrier function, and repaired the structural integrity of liver and colonic tissues. The protein expression levels of ZO-1, Claudin-1, and GPR43 in the colonic tissue were significantly increased (P<0.05, P<0.01), while those of MAPK pathway-related proteins were significantly decreased (P<0.05, P<0.01). The intestinal flora dysbiosis was effectively alleviated, rendering its composition closer to that of normal mice. The efficacy of paeonol in modulating ALD was further confirmed by FMT experiments, supporting its mechanistic involvement in the SCFAs-GPR43/MAPK signaling pathway. ConclusionPaeonol exerts a protective effect against ALD in mice, which may be mediated through regulation of the SCFAs-GPR43/MAPK signaling pathway, thereby achieving anti-inflammatory effects and improving intestinal barrier function.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7.Effectiveness of the integrated schistosomiasis control programme in Sichuan Province from 2015 to 2023
Chen PU ; Yu ZHANG ; Jiajia WAN ; Nannan WANG ; Jingye SHANG ; Liang XU ; Ling CHEN ; Lin CHEN ; Zisong WU ; Bo ZHONG ; Yang LIU
Chinese Journal of Schistosomiasis Control 2025;37(3):284-288
Objective To investigate the effectiveness of the integrated schistosomiasis control programme in Sichuan Province during the stage moving from transmission interruption to elimination (2015—2023), so as to provide insights into formulation of the schistosomiasis control measures during the post-elimination stage. Methods Schistosomiasis control data were retrospectively collected from departments of health, agriculture and rural affairs, forestry and grassland, water resources, and natural resources in Sichuan Province from 2015 to 2023, and a database was created to document examinations and treatments of human and livestock schistosomiasis, and snail survey and control, conversion of paddy fields to dry fields, ditch hardening, rivers and lakes management and building of forests for snail control and schistosomiasis prevention. The completion of schistosomiasis control measures was investigated, and the effectiveness was evaluated. Results A total of 20 545 155 person-times received human schistosomiasis examinations in Sichuan Province during the period from 2015 to 2023, and 232 157 person-times were seropositive, with a reduction in the seroprevalence from 2.10% (44 299/2 107 003) in 2015 to 1.12% (9 361/837 896) in 2023 (χ2 = 7.68, P < 0.001). The seroprevalence of human schistosomiasis appeared a tendency towards a decline in Sichuan Province over years from 2015 to 2023 (b = −8.375, t = −10.052, P < 0.001); however, no egg positive individuals were identified during the period from 2018 to 2023, with the prevalence of human Schistosoma japonicum infections maintained at 0. Expanded chemotherapy was administered to 2 754 515 person-times, and medical assistance of advanced schistosomiasis was given to 6 436 persontimes, with the treatment coverage increasing from 46.80% (827/1 767) in 2015 to 64.87% (868/1 338) in 2023. Parasitological tests for livestock schistosomiasis were performed in 35 113 herd-times, and expanded chemotherapy was administered to 513 043 herd-times, while the number of fenced livestock decreased from 121 631 in 2015 to 103 489 in 2023, with a reduction of 14.92%. Snail survey covered 433 621.80 hm2 in Sichuan Province from 2015 to 2023, with 204 602.81 hm2 treated by chemical control and 4 637.74 hm2 by environmental modifications. The area of snail habitats decreased from the peak of 5 029.80 hm2 in 2016 to 3 709.72 hm2 in 2023, and the actual area of snail habitats decreased from the peak of 8 585.48 hm2 in 2016 to 473.09 hm2 in 2023. The mean density of living snails remained low across the study period except in 2017 (0.62 snails/0.1 m2). Schistosomiasis control efforts by departments of agriculture and rural affairs in Sichuan Province included conversion of paddy fields to dry fields covering 153 346.93 hm2, hardening of 6 110.31 km ditches, building of 70 356 biogas digesters, replacement of cattle with 227 161 sets of machines, and captive breeding of 21 161 070 livestock from 2015 to 2023, and the control efforts by departments of water resources included rivers and lakes management measuring 5 676.92 km and renovation of 2 331 irrigation areas, while the control efforts by departments of forestry and grassland included building of forests for snail control and schistosomiasis prevention covering 23 913.33 hm2, renovation of snail control forests covering 8 720 hm2 and newly building of shelterbelts covering 764 686.67 hm2. All 63 endemic counties (cities and districts) had achieved the criterion for schistosomiasis elimination criteria in Sichuan Province by the end of 2023. Conclusion Following the integrated control efforts from 2015 to 2023, remarkable achievements have been obtained in the schistosomiasis control programme in Sichuan Province, with all endemic counties successfully attaining the schistosomiasis elimination target at the county level.
8.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
9.Role of radiotherapy in extensive-stage small cell lung cancer after durvalumab-based immunochemotherapy: A retrospective study.
Lingjuan CHEN ; Yi KONG ; Fan TONG ; Ruiguang ZHANG ; Peng DING ; Sheng ZHANG ; Ye WANG ; Rui ZHOU ; Xingxiang PU ; Bolin CHEN ; Fei LIANG ; Qiaoyun TAN ; Yu XU ; Lin WU ; Xiaorong DONG
Chinese Medical Journal 2025;138(17):2130-2138
BACKGROUND:
The purpose of this study was to evaluate the safety and efficacy of subsequent radiotherapy (RT) following first-line treatment with durvalumab plus chemotherapy in patients with extensive-stage small cell lung cancer (ES-SCLC).
METHODS:
A total of 122 patients with ES-SCLC from three hospitals during July 2019 to December 2021 were retrospectively analyzed. Inverse probability of treatment weighting (IPTW) analysis was performed to address potential confounding factors. The primary focus of our evaluation was to assess the impact of RT on progression-free survival (PFS) and overall survival (OS).
RESULTS:
After IPTW analysis, 49 patients received durvalumab plus platinum-etoposide (EP) chemotherapy followed by RT (Durva + EP + RT) and 72 patients received immunochemotherapy (Durva + EP). The median OS was 17.2 months vs . 12.3 months (hazard ratio [HR]: 0.38, 95% confidence interval [CI]: 0.17-0.85, P = 0.020), and the median PFS was 8.9 months vs . 5.9 months (HR: 0.56, 95% CI: 0.32-0.97, P = 0.030) in Durva + EP + RT and Durva + EP groups, respectively. Thoracic radiation therapy (TRT) resulted in longer OS (17.2 months vs . 14.7 months) and PFS (9.1 months vs . 7.2 months) compared to RT directed to other metastatic sites. Among patients with oligo-metastasis, RT also showed significant benefits, with a median OS of 17.4 months vs . 13.7 months and median PFS of 9.8 months vs . 5.9 months compared to no RT. Continuous durvalumab treatment beyond progression (TBP) prolonged OS compared to patients without TBP, in both the Durva + EP + RT (NA vs . 15.8 months, HR: 0.48, 95% CI: 0.14-1.63, P = 0.238) and Durva + EP groups (12.3 months vs . 4.3 months, HR: 0.29, 95% CI: 0.10-0.81, P = 0.018). Grade 3 or 4 adverse events occurred in 13 (26.5%) and 13 (18.1%) patients, respectively, in the two groups; pneumonitis was mostly low-grade.
CONCLUSION
Addition of RT after first-line immunochemotherapy significantly improved survival outcomes with manageable toxicity in ES-SCLC.
Humans
;
Small Cell Lung Carcinoma/therapy*
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
Lung Neoplasms/therapy*
;
Aged
;
Antibodies, Monoclonal/therapeutic use*
;
Adult
;
Immunotherapy/methods*
;
Aged, 80 and over
10.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.

Result Analysis
Print
Save
E-mail