1.Titin: structure, isoforms and functional regulation.
Chun-Jie GUO ; Liang YU ; Yan-Jin LI ; Yue ZHOU
Acta Physiologica Sinica 2023;75(4):544-554
Titin, the largest known protein in the body expressed in three isoforms (N2A, N2BA and N2B), is essential for muscle structure, force generation, conduction and regulation. Since the 1950s, muscle contraction mechanisms have been explained by the sliding filament theory involving thin and thick muscle filaments, while the contribution of cytoskeleton in force generation and conduction was ignored. With the discovery of insoluble protein residues and large molecular weight proteins in muscle fibers, the third myofilament, titin, has been identified and attracted a lot of interests. The development of single molecule mechanics and gene sequencing technology further contributed to the extensive studies on the arrangement, structure, elastic properties and components of titin in sarcomere. Therefore, this paper reviews the structure, isforms classification, elastic function and regulatory factors of titin, to provide better understanding of titin.
Connectin/genetics*
;
Muscle Proteins/metabolism*
;
Protein Isoforms/genetics*
;
Sarcomeres/metabolism*
;
Muscle Fibers, Skeletal/metabolism*
2.Research progress of vascular endothelial growth factor-A and its isoforms in kidney disease.
Jing JING ; Xin ZHONG ; Bi-Cheng LIU ; Lin-Li LYU
Acta Physiologica Sinica 2022;74(1):59-66
Vascular endothelial growth factor-A (VEGF-A) is a critical angiogenic factor which is mainly secreted from podocytes and epithelial cells in kidney and plays an important role in renal pathophysiology. In recent years, functions of different isoforms of VEGF-A and the new secretion approach via extracellular vesicles (EVs) have been identified. Thus, further understanding are needed for the role of VEGF-A and its isoforms in renal injury and repair. In this review, we summarized the expression, secretion and regulation of VEGF-A, its biological function, and the role of different isoforms of VEGF-A in the development of different renal diseases. Meanwhile, the research progress of VEGF-A as diagnostic marker and therapeutic target for renal diseases were discussed.
Humans
;
Kidney/metabolism*
;
Kidney Diseases
;
Protein Isoforms/metabolism*
;
Vascular Endothelial Growth Factor A/physiology*
3.Dual Role of Wnt5a in the Progression of Inflammatory Diseases.
Xu CHEN ; Hong-Ling LIU ; De-Hong LI ; Jin-Sui WANG ; Fenghui ZHAO
Chinese Medical Sciences Journal 2022;37(3):265-274
Wnt5a is a secreted Wnt ligand that plays a critical role in cellular pathways and inflammatory diseases. The WNT5A gene encodes two protein isoforms, Wnt5a-long and Wnt5a-short, which differ based on different promoter methylation and have distinct functions. However, the mechanisms of the promoter methylation are unclear. Depending on the extent of promoter methylation, Wnt5a exerts both anti-inflammatory and pro-inflammatory effects in inflammatory diseases, which may be involved in different Wnt5a isoforms. Therefore, the Wnt5a isoforms may be potential diagnostic markers for inflammatory diseases and the mechanisms of the WNT5A gene promoter methylation need to be further investigated.
DNA Methylation
;
Wnt-5a Protein
;
Promoter Regions, Genetic
;
Protein Isoforms/genetics*
4.Clinical value of serum isoform -2 proprostate-specific antigen and its derivatives in predicting aggressive prostate cancer.
Kui Xia SUN ; Cun Ling YAN ; Zhi Yan LI ; Ping LIU ; Wei ZHANG ; Qun HE
Journal of Peking University(Health Sciences) 2020;52(2):234-239
OBJECTIVE:
To explore the clinical value of serum isoform [-2] proprostate-specific antigen (p2PSA) and its derivatives %p2PSA and prostate health index (PHI) in predicting aggressive prostate cancer (PCa).
METHODS:
The pre-operation serum and basic clinical data of 322 patients with PCa (including 143 patients diagnosed with PCa by transrectal ultrasound-guided prostate biopsy and 179 patients undergoing radical prostatectomy) in Peking University First Hospital were collected from August 2015 to May 2018. Serum total prostate-specific antigen (tPSA), free prostate antigen (fPSA) and fPSA/tPSA (f/t) and the p2PSA level of all these patients were measured on automatic immune analyzers DxI800, and then %p2PSA and PHI were calculated. The prostate pathologic result was considered as the gold standard to evaluate the Gleason score of the patients with PCa. Receiver operator curves (ROC) were used to assess the ability of p2PSA, %p2PSA and PHI to predict aggressive PCa (pathologic Gleason score≥7) compared with those traditional markers tPSA, fPSA and f/t.
RESULTS:
Among these patients, the p2PSA, %p2PSA and PHI median levels were significantly higher in patients with pathologic Gleason score≥7 than those with Gleason score<7 (p2PSA: 30.22 ng/L vs. 18.33 ng/L; %p2PSA: 2.50 vs. 1.27; PHI: 91.81 vs. 35.44; all P<0.01). The area under curve (AUC) of %p2PSA and PHI (0.770, 0.760) in predicting Gleason score≥7 were higher than those of the traditional indicators tPSA, fPSA and f/t (AUC were 0.648, 0.536 and 0.693, respectively). Among those patients diagnosed with PCa by transrectal ultrasound-guided prostate biopsy, the AUC of %p2PSA and PHI (AUC were 0.808 and 0.801, respectively) in predicting Gleason score≥7 were higher than those of the traditional indicators tPSA, fPSA and f/t (AUC were 0.729, 0.655 and 0.665 respectively). Among those patients undergoing radical prostatectomy, PHI and %p2PSA also had the trend of higher predictive value than those of the traditional indicators. The AUC of %p2PSA and PHI were 0.798 and 0.744, respectively while the AUC of tPSA, fPSA and f/t were 0.625, 0.507 and 0.697, respectively.
CONCLUSION
Compared with traditional markers tPSA, fPSA and f/t, %p2PSA and PHI had much higher predictive value for aggressive PCa, which may help clinicians to evaluate the therapeutic regime and make more appropriate management plan for the patients.
Humans
;
Male
;
Neoplasm Grading
;
Prostate-Specific Antigen
;
Prostatectomy
;
Prostatic Neoplasms
;
Protein Isoforms
;
ROC Curve
5.Galectin-4 Interaction with CD14 Triggers the Differentiation of Monocytes into Macrophage-like Cells via the MAPK Signaling Pathway
So Hee HONG ; Jun Seop SHIN ; Hyunwoo CHUNG ; Chung Gyu PARK
Immune Network 2019;19(3):e17-
Galectin-4 (Gal-4) is a β-galactoside-binding protein mostly expressed in the gastrointestinal tract of animals. Although intensive functional studies have been done for other galectin isoforms, the immunoregulatory function of Gal-4 still remains ambiguous. Here, we demonstrated that Gal-4 could bind to CD14 on monocytes and induce their differentiation into macrophage-like cells through the MAPK signaling pathway. Gal-4 induced the phenotypic changes on monocytes by altering the expression of various surface molecules, and induced functional changes such as increased cytokine production and matrix metalloproteinase expression and reduced phagocytic capacity. Concomitant with these changes, Gal-4-treated monocytes became adherent and showed elongated morphology with higher expression of macrophage markers. Notably, we found that Gal-4 interacted with CD14 and activated the MAPK signaling cascade. Therefore, these findings suggest that Gal-4 may exert the immunoregulatory functions through the activation and differentiation of monocytes.
Animals
;
Antigens, CD14
;
Cell Differentiation
;
Galectin 4
;
Galectins
;
Gastrointestinal Tract
;
Macrophages
;
Monocytes
;
Protein Isoforms
6.The Role of Peroxiredoxin Family in Cancer Signaling
Journal of Cancer Prevention 2019;24(2):65-71
Peroxiredoxins (Prxs) are antioxidant enzymes that protect cells from oxidative stress by reducing intracellular accumulation of reactive oxygen species (ROS). In mammalian cells, the six Prx isoforms are ubiquitously expressed in diverse intracellular locations. They are involved in the regulation of various physiological processes including cell growth, differentiation, apoptosis, immune response and metabolism as well as intracellular ROS homeostasis. Although there are increasing evidences that Prxs are involved in carcinogenesis of many cancers, their role in cancer is controversial. The ROS levels in cancer cells are increased compared to normal cells, thus promoting cancer development. Nevertheless, for various cancer types, an overexpression of Prxs has been found to be associated with poor patient prognosis, and an increasing number of studies have reported that tumorigenesis is either facilitated or inhibited by regulation of cancer-associated signaling pathways. This review summarizes Prx isoforms and their basic functions, the relationship between the expression level and the physiological role of Prxs in cancer cells, and their roles in regulating cancer-associated signaling pathways.
Apoptosis
;
Carcinogenesis
;
Homeostasis
;
Humans
;
Metabolism
;
Oxidative Stress
;
Peroxiredoxins
;
Physiological Processes
;
Prognosis
;
Protein Isoforms
;
Reactive Oxygen Species
7.EF-hand like Region in the N-terminus of Anoctamin 1 Modulates Channel Activity by Ca²⁺ and Voltage
Min Ho TAK ; Yongwoo JANG ; Woo Sung SON ; Young Duk YANG ; Uhtaek OH
Experimental Neurobiology 2019;28(6):658-669
Anoctamin1 (ANO1) also known as TMEM16A is a transmembrane protein that functions as a Ca²⁺ activated chloride channel. Recently, the structure determination of a fungal Nectria haematococca TMEM16 (nhTMEM16) scramblase by X-ray crystallography and a mouse ANO1 by cryo-electron microscopy has provided the insight in molecular architecture underlying phospholipid scrambling and Ca²⁺ binding. Because the Ca²⁺ binding motif is embedded inside channel protein according to defined structure, it is still unclear how intracellular Ca²⁺ moves to its deep binding pocket effectively. Here we show that EF-hand like region containing multiple acidic amino acids at the N-terminus of ANO1 is a putative site regulating the activity of ANO1 by Ca²⁺ and voltage. The EF-hand like region of ANO1 is highly homologous to the canonical EF hand loop in calmodulin that contains acidic residues in key Ca²⁺-coordinating positions in the canonical EF hand. Indeed, deletion and Ala-substituted mutation of this region resulted in a significant reduction in the response to Ca²⁺ and changes in its key biophysical properties evoked by voltage pulses. Furthermore, only ANO1 and ANO2, and not the other TMEM16 isoforms, contain the EF-hand like region and are activated by Ca²⁺. Moreover, the molecular modeling analysis supports that EF-hand like region could play a key role during Ca²⁺ transfer. Therefore, these findings suggest that EF-hand like region in ANO1 coordinates with Ca²⁺ and modulate the activation by Ca²⁺ and voltage.
Amino Acids, Acidic
;
Animals
;
Calcium
;
Calmodulin
;
Chloride Channels
;
Cryoelectron Microscopy
;
Crystallography, X-Ray
;
EF Hand Motifs
;
Mice
;
Models, Molecular
;
Mutagenesis
;
Nectria
;
Protein Isoforms
8.A Multi-institutional Study of Prevalence and Clinicopathologic Features of Non-invasive Follicular Thyroid Neoplasm with Papillary-like Nuclear Features (NIFTP) in Korea
Ja Yeong SEO ; Ji Hyun PARK ; Ju Yeon PYO ; Yoon Jin CHA ; Chan Kwon JUNG ; Dong Eun SONG ; Jeong Ja KWAK ; So Yeon PARK ; Hee Young NA ; Jang Hee KIM ; Jae Yeon SEOK ; Hee Sung KIM ; Soon Won HONG
Journal of Pathology and Translational Medicine 2019;53(6):378-385
BACKGROUND: In the present multi-institutional study, the prevalence and clinicopathologic characteristics of non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) were evaluated among Korean patients who underwent thyroidectomy for papillary thyroid carcinoma (PTC).METHODS: Data from 18,819 patients with PTC from eight university hospitals between January 2012 and February 2018 were retrospectively evaluated. Pathology reports of all PTCs and slides of potential NIFTP cases were reviewed. The strict criterion of no papillae was applied for the diagnosis of NIFTP. Due to assumptions regarding misclassification of NIFTP as non-PTC tumors, the lower boundary of NIFTP prevalence among PTCs was estimated. Mutational analysis for BRAF and three RAS isoforms was performed in 27 randomly selected NIFTP cases.RESULTS: The prevalence of NIFTP was 1.3% (238/18,819) of all PTCs when the same histologic criteria were applied for NIFTP regardless of the tumor size but decreased to 0.8% (152/18,819) when tumors ≥1 cm in size were included. The mean follow-up was 37.7 months and no patient with NIFTP had evidence of lymph node metastasis, distant metastasis, or disease recurrence during the follow-up period. A difference in prevalence of NIFTP before and after NIFTP introduction was not observed. BRAF(V600E) mutation was not found in NIFTP. The mutation rate for the three RAS genes was 55.6% (15/27).CONCLUSIONS: The low prevalence and indolent clinical outcome of NIFTP in Korea was confirmed using the largest number of cases to date. The introduction of NIFTP may have a small overall impact in Korean practice.
Carcinoma, Papillary
;
Diagnosis
;
Follow-Up Studies
;
Genes, ras
;
Hospitals, University
;
Humans
;
Korea
;
Lymph Nodes
;
Mutation Rate
;
Neoplasm Metastasis
;
Pathology
;
Prevalence
;
Protein Isoforms
;
Recurrence
;
Retrospective Studies
;
Thyroid Gland
;
Thyroid Neoplasms
;
Thyroidectomy
9.Expression of Ikaros and FUT4 in Children's Acute Lymphoblastic Leukemia and Their Relationship.
Li-Jun YI ; Hong LI ; Zhi-Bing GUO ; Zhi-Qiang LIU ; Jing ZHOU ; Chong-Jun WU ; Xiao-Ping ZENG
Journal of Experimental Hematology 2019;27(1):1-6
OBJECTIVE:
To explore the possible molecular mechanism of Ikaros regulation on FUT4 expression by analyzing the correlation of the functional state of Ikaros with level of FUT4 expression, so as to provide the theoretical basis for personalized treatment in children with ALL.
METHODS:
The subtypes of Ikaros were identified by nested PCR and sequencing. The expression level of FUT4 was detected by quantitative PCR and analyzed by ΔΔCt method in the early stage of treatment, remission and relapse of ALL.
RESULTS:
Ik1 and Ik2 were the main functional subtypes, and the dominant negative Ikaros was Ik6; the Ik6 was detected in 23 patients with ALL. It was found that 2.73% patients expressing Ik6 alone and 18.18% patients with heterozygous expression were detected. The expression of FUT4 in the newly diagnosed ALL was higher than that in the control group, and the functional Ikaros negatively correlated with the FUT4 expression(r=-0.6329).
CONCLUSION
Dominant negative Ikaros closely correlated with the relapse of acute lymphoblastic leukemia in children. The functional Ikaros negatively correlated with FUT4 expression. Ikaros inhibit the transcriptional activity of FUT4, that may be the molecular mechanism of Ikaros regulating the expression of FUT4.
Acute Disease
;
Child
;
Fucosyltransferases
;
metabolism
;
Humans
;
Ikaros Transcription Factor
;
metabolism
;
Lewis X Antigen
;
metabolism
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma
;
Protein Isoforms
;
Recurrence
10.Neuroligins Differentially Mediate Subtype-Specific Synapse Formation in Pyramidal Neurons and Interneurons.
Qiang-Qiang XIA ; Jing XU ; Tai-Lin LIAO ; Jie YU ; Lei SHI ; Jun XIA ; Jian-Hong LUO ; Junyu XU
Neuroscience Bulletin 2019;35(3):497-506
Neuroligins (NLs) are postsynaptic cell-adhesion proteins that play important roles in synapse formation and the excitatory-inhibitory balance. They have been associated with autism in both human genetic and animal model studies, and affect synaptic connections and synaptic plasticity in several brain regions. Yet current research mainly focuses on pyramidal neurons, while the function of NLs in interneurons remains to be understood. To explore the functional difference among NLs in the subtype-specific synapse formation of both pyramidal neurons and interneurons, we performed viral-mediated shRNA knockdown of NLs in cultured rat cortical neurons and examined the synapses in the two major types of neurons. Our results showed that in both types of neurons, NL1 and NL3 were involved in excitatory synapse formation, and NL2 in GABAergic synapse formation. Interestingly, NL1 affected GABAergic synapse formation more specifically than NL3, and NL2 affected excitatory synapse density preferentially in pyramidal neurons. In summary, our results demonstrated that different NLs play distinct roles in regulating the development and balance of excitatory and inhibitory synapses in pyramidal neurons and interneurons.
Animals
;
Cell Adhesion Molecules, Neuronal
;
physiology
;
Cells, Cultured
;
Cerebral Cortex
;
embryology
;
physiology
;
GABAergic Neurons
;
physiology
;
Interneurons
;
physiology
;
Membrane Proteins
;
physiology
;
Nerve Tissue Proteins
;
physiology
;
Protein Isoforms
;
physiology
;
Pyramidal Cells
;
physiology
;
Rats, Sprague-Dawley
;
Synapses
;
physiology

Result Analysis
Print
Save
E-mail