1.Carbon footprint accounting of traditional Chinese medicine extracts based on life cycle assessment: a case study of mulberry leaf extract from an enterprise.
Zhi-Min CI ; Jian-Xiang OU ; Qiang YU ; Chuan ZHENG ; Zhao-Qing PEI ; Li-Ping QU ; Ming YANG ; Li HAN ; Ding-Kun ZHANG
China Journal of Chinese Materia Medica 2025;50(1):120-129
Under the background of carbon peaking and carbon neutrality goals, the Ministry of Ecology and Environment, together with 15 national ministries and commissions, has formulated the Implementation Plan on Establishing a Carbon Footprint Management System, and it is urgent for traditional Chinese medicine(TCM) pharmaceutical enterprises to carry out research on carbon footprint accounting methods of related products. Based on the life cycle assessment(LCA) theory, taking mulberry leaf extract produced by a certain enterprise as an example, this study analyzed the carbon footprint of TCM extracts during the life cycle. The results show that for every 1 kg of product produced, the carbon emissions from the stages of raw material acquisition, transportation, and extract production are-20.569, 1.205, and 173.577 kgCO_2eq(CO_2 equivalent), respectively. The carbon footprint of the product is 154.213 kgCO_2eq·kg~(-1). In addition, the carbon emission is the highest in the production stage, in which the consumption of ethanol solvents makes the greatest contribution to the carbon footprint, accounting for 25.71%, more than one-fourth of the total carbon footprint. The second contribution was from the treatment process of TCM residues, accounting for 19.67%, closely followed by wastewater treatment(17.71%), the consumption of hot steam(17.43%), and drinking water(16.90%). The consumption of electric power and packaging materials has a smaller carbon emission of 2.58%. In particular, the carbon emission caused by the consumption of packaging materials is only 0.04%, which is negligible. The results of the study are expected to provide a reference for TCM enterprises to carry out research on the carbon footprint of products, offer ideas for collaborative innovation in reducing pollution and carbon emissions throughout the entire industry chain of TCM, and develop new quality productivity of modern TCM industry based on green and low-carbon manufacturing.
Morus/chemistry*
;
Plant Leaves/chemistry*
;
Carbon Footprint
;
Drugs, Chinese Herbal/chemistry*
;
Plant Extracts/analysis*
;
Medicine, Chinese Traditional
2.A new tetralone glycoside in leaves of Cyclocarya paliurus.
Ting-Si GUO ; Qin HUANG ; Qi-Qi HU ; Fei-Bing HUANG ; Qing-Ling XIE ; Han-Wen YUAN ; Wei WANG ; Yu-Qing JIAN
China Journal of Chinese Materia Medica 2025;50(1):146-167
The chemical constituents from leaves of Cyclocarya paliurus were isolated and purified by chromatography on silica gel, C_(18) reverse-phase silica gel, and Sephadex LH-20 gel, as well as semi-preparative high-performance liquid chromatography. Six compounds were identified by UV, IR, NMR, MS, calculated ECD, and comparison with literature data as cyclopaloside D(1), boscialin(2),(5R,6S)-6-hydroxy-6-[(E)-3-hydroxybut-1-enyl]-1,1,5-trimethylcyclohexanone(3), 3S,5R-dihydroxy-6R,7-megastigmadien-9-one(4), 3S,5R-dihydroxy-6S,7-megastigmadien-9-one(5), and gingerglycolipid A(6), respectively. Among them, compound 1 was identified as a new tetralone glycoside, and compounds 2-6 were isolated from leaves of C. paliurus for the first time. Furthermore, compound 1 exhibited strong antioxidant activity, with the IC_(50) of(454.20±31.81)μmol·L~(-1) and(881.82±42.31)μmol·L~(-1) in scavenging DPPH and ABTS free radicals, respectively.
Plant Leaves/chemistry*
;
Glycosides/isolation & purification*
;
Juglandaceae/chemistry*
;
Tetralones/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
3.Differences in growth and secondary metabolite accumulation of Panax quinquefolius between understory and field planting in Shandong, China.
Yue WANG ; Xin-Ying MAO ; Yu DING ; Hong-Xia YU ; Zhi-Fang RAN ; Xiao-Li CHEN ; Jie ZHOU
China Journal of Chinese Materia Medica 2025;50(6):1524-1533
In order to compare the differences in growth and secondary metabolite accumulation of Panax quinquefolius between understory and field planting, growth indexes, photosynthetic characteristics, soil enzyme activities, secondary metabolite contents, and antioxidant activities of P. quinquefolius under different planting modes were examined and compared, and One-way analysis of variance(ANOVA) and correlation analyses were carried out by using the software SPSS 25.0 and GraphPad Prism 9.5. The Origin 2021 software was used for plotting. The results showed that compared with those under field planting, the plant height, leaf length, leaf width, photosynthetic rate, and chlorophyll content of P. quinquefolius under understory planting were significantly reduced, and arbuscular mycorrhizal fungi(AMF) infestation rate and infestation intensity, ginsenoside content, and antioxidant activity were significantly increased. The activities of inter-root soil urease, sucrase, and catalase increased, while the activities of non-inter-root soil urease and alkaline phosphatase increased. Correlation analyses showed that the plant height and leaf length of P. quinquefolius plant were significantly positively correlated with net photosynthetic rate, transpiration rate, chlorophyll content, and electron transfer rate(P<0.05), while ginsenoside content was significantly negatively correlated with net photosynthetic rate, chlorophyll content, and electron transfer rate(P<0.05) and significantly positively correlated with AMF infestation rate and infestation intensity(P<0.05). In addition, ginsenoside content was significantly positively correlated with the activities of inter-root soil sucrase, urease, and catalase(P<0.05). This study provides basic data for revealing the mechanism of secondary metabolite accumulation in P. quinquefolius under understory planting and for exploring and practicing the ecological mode of P. quinquefolius under understory planting.
Panax/microbiology*
;
China
;
Secondary Metabolism
;
Soil/chemistry*
;
Photosynthesis
;
Plant Leaves/metabolism*
;
Chlorophyll/metabolism*
;
Mycorrhizae
4.Transcriptome analysis and catechin synthesis genes in different organs of Spatholobus suberectus.
Wei-Qi QIN ; Quan LIN ; Ying LIANG ; Fan WEI ; Gui-Li WEI ; Qi GAO ; Shuang-Shuang QIN
China Journal of Chinese Materia Medica 2025;50(12):3297-3306
To study the differences in transcript levels among different organs of Spatholobus suberectus and to explore the genes encoding enzymes related to the catechin biosynthesis pathway, this study utilized the genome and full-length transcriptome data of S. suberectus as references. Transcriptome sequencing and bioinformatics analysis were performed on five different organs of S. suberectus-roots, stems, leaves, flowers, and fruits-using the Illumina NovaSeq 6000 platform. A total of 115.28 Gb of clean data were obtained, with GC content values ranging from 45.19% to 47.54%, Q20 bases at 94.17% and above, and an overall comparison rate with the reference genome around 90%. In comparisons between the stem and root, stem and leaf, stem and flower, and stem and fruit, 10 666, 9 674, 9 320, and 5 896 differentially expressed genes(DEGs) were identified, respectively. The lowest number of DEGs was found in the stem and root comparison group. KEGG enrichment analysis revealed that the DEGs were mainly concentrated in the pathways of phytohormone signaling, phenylalanine biosynthesis, etc. A total of 39 genes were annotated in the catechin biosynthesis pathway, with at least one highly expressed gene found in all organs. Among these, PAL1, PAL2, C4H1, C4H3, 4CL1, 4CL2, and DFR2 showed high expression in the stems, suggesting that they may play important roles in the biosynthesis of flavonoids in S. suberectus. This study aims to provide important information for the in-depth exploration of the regulation of catechin biosynthesis in S. suberectus through transcriptome analysis of its different organs and to provide a reference for the further realization of S. suberectus varietal improvement and molecular breeding.
Catechin/biosynthesis*
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Fabaceae/metabolism*
;
Transcriptome
;
Flowers/metabolism*
;
Plant Stems/metabolism*
;
Plant Leaves/metabolism*
;
Plant Roots/metabolism*
;
Fruit/metabolism*
5.Morphological and physiological responses to shading caused by dense planting or light quality modulation in shade-tolerant plant Anoectochilus roxburghii.
Xiao-Lei GUO ; Li-Chun ZHOU ; Ming-Jie LI ; Zhong-Yi ZHANG ; Li GU
China Journal of Chinese Materia Medica 2025;50(10):2648-2657
The balance between growth and defense in response to nearby or canopy shading in heliotropic plants has been deeply understood. However, the adaptive traits developed by shade-tolerant plants through long-term evolution remain unclear. In this study, the typical shade-tolerant medicinal plant Anoectochilus roxburghii was used as the experimental material.(1) Different planting densities were set, including 8 cm(row spacing) × 8 cm(plant spacing), 6 cm × 6 cm, 4 cm × 4 cm, and 2 cm × 2 cm, to monitor the individual plant responses to nearby shading.(2) Different light environments, including blue light∶red light=3∶2(B3R2), blue light∶red light∶far-red light=3∶2∶1(B3R2FR1), blue light∶red light∶far-red light=3∶2∶2(B3R2FR2), and blue light∶red light∶far-red light=3∶2∶4(B3R2FR4), were set to monitor the morphological and physiological changes in plants in response to actual shading conditions. The results showed that:(1) Moderate increases in planting density helped optimize morphological traits such as stem diameter and leaf area. This not only slightly increased biomass but also significantly improved SOD activity in both leaves and stems, as well as lignin content in stems, thereby enhancing the plant's defense capabilities.(2) Increasing the far-red light in the light environment negatively regulated the plant height of A. roxburghii, which was contrary to the typical shade-avoidance response observed in heliotropic plants. However, it significantly enhanced SOD and POD activity in both stems and leaves, as well as lignin content in stems. Furthermore, it reduced the incidence and disease index of stalk rot, effectively defending against biotic stress. Therefore, the shade-tolerant plant A. roxburghii has specific adaptive strategies for shading conditions. Reasonable dense planting or light environment modulation can synergistically improve yield, medicinal quality, and resistance of A. roxburghii. This study provides a theoretical foundation and technical support for optimizing the regional deployment and cultivation strategies of ecological planting for Chinese medicinal materials.
Orchidaceae/genetics*
;
Light
;
Plant Leaves/physiology*
;
Sunlight
;
Adaptation, Physiological/radiation effects*
;
Plant Proteins/genetics*
6.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*
7.Effect and mechanism of Moringa oleifera leaves, seeds, and velamen in improving learning and memory impairments in mice based on transcriptomic and metabolomic.
Zhi-Hao WANG ; Shu-Yi FENG ; Tao LI ; Wan-Ping ZHOU ; Jin-Yu WANG ; Yang LIU ; Lin ZHANG ; Yuan-Yuan XIE ; Xiu-Lan HUANG ; Zhi-Yong LI ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(13):3793-3812
Moringa oleifera, widely utilized in Ayurvedic medicine, is recognized for its leaves, seeds, and velamen possessing traditional effects such as vātahara(wind alleviation), sirovirecaka(brain clearing), and hridya(mental nourishment). This study aims to identify the medicinal part of ■ in the Sārasvata ghee formulation as described in the Bower Manuscript, while investigating the ameliorative effects of different medicinal parts of M. oleifera on learning and memory deficits in mice and elucidating the underlying molecular mechanisms. A total of 144 male ICR mice were randomly assigned to the following groups: control, model(scopolamine hydrobromide, Sco, 2 mg·kg~(-1)), donepezil(donepezil hydrochloride, Don, 3 mg·kg~(-1)), M. oleifera leaf low-, medium-, and high-dose groups(0.5, 1, 2 g·kg~(-1)), M. oleifera seeds low-, medium-, and high-dose groups(0.25, 0.5, 1 g·kg~(-1)), and M. oleifera velamen low-, medium-, and high-dose groups(0.31, 0.62, 1.24 g·kg~(-1)). Learning and memory abilities were assessed using the passive avoidance test and Morris water maze. Nissl and HE staining were employed to examine histopathological changes in the hippocampus. Transcriptomics and targeted metabolomics were used to screen differential genes and metabolites, with MetaboAnalyst 6.0 and O2PLS methods applied to identify key disease-related targets and pathways. RESULTS:: demonstrated that M. oleifera leaf(1 g·kg~(-1)) significantly ameliorated Sco-induced learning and memory deficits, outperforming M. oleifera seeds(0.25 g·kg~(-1)) and M. oleifera velamen(1.24 g·kg~(-1)). This was evidenced by improved behavioral performance, reversal of neuronal damage, and reduced acetylcholinesterase(AChE) activity. Multi-omics analysis revealed that M. oleifera leaf upregulated Tuba1c gene expression through the synaptic vesicle cycle, enhancing glutamate(Glu), dopamine(DA), and acetylcholine(ACh) release via Tuba1c-Glu associations for neuroprotection. M. oleifera seeds targeted the dopaminergic synapse pathway, promoting memory consolidation through Drd2-ACh associations. M. oleifera velamen was associated with the cocaine addiction pathway, modulating dopamine metabolism via Adora2a-DOPAC, with limited relevance to learning and memory. In conclusion, M. oleifera leaf exhibits superior efficacy and mechanistic advantages over M. oleifera seeds and velamen, suggesting that the ■ in the Sārasvata ghee formulation is likely M. oleifera leaf, providing scientific evidence for its identification in ancient texts.
Animals
;
Moringa oleifera/chemistry*
;
Male
;
Mice
;
Seeds/chemistry*
;
Plant Leaves/chemistry*
;
Mice, Inbred ICR
;
Memory Disorders/psychology*
;
Transcriptome/drug effects*
;
Memory/drug effects*
;
Learning/drug effects*
;
Metabolomics
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Maze Learning/drug effects*
8.Stem-leaf saponins of Panax notoginseng attenuate experimental Parkinson's disease progression in mice by inhibiting microglia-mediated neuroinflammation via P2Y2R/PI3K/AKT/NFκB signaling pathway.
Hui WU ; Chenyang NI ; Yu ZHANG ; Yingying SONG ; Longchan LIU ; Fei HUANG ; Hailian SHI ; Zhengtao WANG ; Xiaojun WU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):43-53
Stem-leaf saponins from Panax notoginseng (SLSP) comprise numerous PPD-type saponins with diverse pharmacological properties; however, their role in Parkinson's disease (PD), characterized by microglia-mediated neuroinflammation, remains unclear. This study evaluated the effects of SLSP on suppressing microglia-driven neuroinflammation in experimental PD models, including the 1-methyl-4-phenylpyridinium (MPTP)-induced mouse model and lipopolysaccharide (LPS)-stimulated BV-2 microglia. Our findings revealed that SLSP mitigated behavioral impairments and excessive microglial activation in models of PD, including MPTP-treated mice. Additionally, SLSP inhibited the upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) and attenuated the phosphorylation of PI3K, protein kinase B (AKT), nuclear factor-κB (NFκB), and inhibitor of NFκB protein α (IκBα) both in vivo and in vitro. Moreover, SLSP suppressed the production of inflammatory markers such as interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α) in LPS-stimulated BV-2 cells. Notably, the P2Y2R agonist partially reversed the inhibitory effects of SLSP in LPS-treated BV-2 cells. These results suggest that SLSP inhibit microglia-mediated neuroinflammation in experimental PD models, likely through the P2Y2R/PI3K/AKT/NFκB signaling pathway. These novel findings indicate that SLSP may offer therapeutic potential for PD by attenuating microglia-mediated neuroinflammation.
Animals
;
Panax notoginseng/chemistry*
;
Saponins/pharmacology*
;
Microglia/immunology*
;
Mice
;
NF-kappa B/immunology*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/immunology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Male
;
Parkinson Disease/immunology*
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Plant Leaves/chemistry*
;
Neuroinflammatory Diseases/drug therapy*
;
Humans
9.Withanolide derivatives from Physalis angulata var. villosa and their cytotoxic activities.
Peng WANG ; Jue YANG ; Yu ZHANG ; Jun JIN ; Meijun CHEN ; Xiaojiang HAO ; Chunmao YUAN ; Ping YI
Chinese Journal of Natural Medicines (English Ed.) 2025;23(6):762-768
A comprehensive phytochemical investigation of the leaves and twigs of Physalis angulata. var. villosa resulted in the isolation of 23 withanolide derivatives, including one novel 13,20-γ-lactone withanolide derivative (1) and three new withanolide derivatives (2-4). Architecturally, physalinin A (1) represents the first identified type B withanolide featuring a 13,20-γ-lactone moiety. The molecular structures of all isolates were elucidated using an integrated approach combining nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared (IR) spectroscopy, and quantum chemical calculations to confirm structural assignments. The antiproliferative activities of all isolated withanolides were evaluated against four human cancer cell lines (HEL, HCT-116, Colo320DM, and MDA-MB-231). Among them, eight derivatives (2, 5-8, 14, 15, and 23) exhibited significant inhibitory effects, with half-maximal inhibitory concentration (IC50) values of 0.18 ± 0.03 to 17.02 ± 0.21 μmol·L-1. Structure-activity relationship (SAR) analysis suggested that the presence of an epoxide ring enhances anticancer activity, potentially through increased reactivity or specific interactions with molecular targets involved in cancer progression. These findings underscore the pharmacological potential of withanolides as promising lead compounds for the development of novel anticancer therapeutics.
Withanolides/isolation & purification*
;
Physalis/chemistry*
;
Humans
;
Molecular Structure
;
Cell Line, Tumor
;
Antineoplastic Agents, Phytogenic/isolation & purification*
;
Cell Proliferation/drug effects*
;
Plant Leaves/chemistry*
;
Plant Extracts/pharmacology*
10.Ten new lignans with anti-inflammatory activities from the leaves of Illicium dunnianum.
Ting LI ; Xiaoqing HE ; Dabo PAN ; Xiaochun ZENG ; Siying ZENG ; Zhenzhong WANG ; Xinsheng YAO ; Wei XIAO ; Haibo LI ; Yang YU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):990-996
The anti-inflammatory phytochemical investigation of the leaves of Illicium dunnianum (I. dunnianum) resulted in the isolation of five pairs of new lignans (1-5), and 7 known analogs (6-12). The separation of enantiomer mixtures 1-5 to 1a/1b-5a/5b was achieved using a chiral column with acetonitrile-water mixtures as eluents. The planar structures of 1-2 were previously undescribed, and the chiral separation and absolute configurations of 3-5 were reported for the first time. Their structures were determined through comprehensive spectroscopic data analysis [nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass (HR-ESI-MS), infrared (IR), and ultraviolet (UV)] and quantum chemistry calculations (ECD). The new isolates were evaluated by measuring their inhibitory effect on NO in lipopolysaccharide (LPS)-stimulated BV-2 cells. Compounds 1a, 3a, 3b, and 5a demonstrated partial inhibition of NO production in a concentration-dependent manner. Western blot and real-time polymerase chain reaction (PCR) assays revealed that 1a down-regulated the messenger ribonucleic acid (mRNA) levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), COX-2, and iNOS and the protein expressions of COX-2 and iNOS. This research provides guidance and evidence for the further development and utilization of I. dunnianum.
Lignans/isolation & purification*
;
Plant Leaves/chemistry*
;
Anti-Inflammatory Agents/isolation & purification*
;
Mice
;
Animals
;
Molecular Structure
;
Plant Extracts/pharmacology*
;
Illicium/chemistry*
;
Cyclooxygenase 2/immunology*
;
Interleukin-6/immunology*
;
Nitric Oxide/metabolism*
;
Cell Line
;
Tumor Necrosis Factor-alpha/immunology*
;
Nitric Oxide Synthase Type II/immunology*
;
Lipopolysaccharides

Result Analysis
Print
Save
E-mail