1.Anti-hyperuricemia activity and its mechanism of flavonoid extract from saffron floral bio-residues.
Na CHEN ; Hua LI ; Jing MENG ; Yi-Fei YANG ; Bin YANG
China Journal of Chinese Materia Medica 2023;48(1):148-159
A hyperuricemic rat model induced by adenine and ethambutol was established to investigate the anti-hyperuricemia activity and its mechanism of the flavonoid extract from saffron floral bio-residues. Sixty-seven SD rats were randomly divided into control group, model group, positive control group, and flavonoid extract groups(with 3 doses), respectively, and each group contained 11 or 12 rats. The hyperuricemic model was established by continuous oral administration of adenine(100 mg·kg~(-1)) and ethambutol(250 mg·kg~(-1)) for 7 days. At the same time, the positive control group was given allopurinol(20 mg·kg~(-1) per day) and the flavonoid extract groups were given the flavonoid extract at doses of 340, 170 and 85 mg·kg~(-1) per day, respectively. On day 8, rat serum, liver, kidney, and intestinal tissues were collected, and the levels of uric acid in serum and tissue, the xanthine oxidase activities and antioxi-dant activities in serum and liver were evaluated, and the kidney histopathology was explored. In addition, an untargeted serum metabolomics study was performed. According to the results, the flavonoid extract effectively reduced the uric acid levels in serum, kidney and ileum and inhibited the xanthine oxidase activities and elevated the antioxidant activities of serum and liver in hyperuricemic rat. At the same time, it reduced the levels of inflammation factors in kidney and protected renal function. Moreover, 68 differential metabolites of hyperuricemic rats were screened and most of which were lipids and amino acids. The flavonoid extract significantly retrieved the levels of differential metabolites in hyperuricemic rats, such as SM(d18:1/20:0), PC[18:0/18:2(92,12Z)], palmitic acid and citrulline, possibly through the following three pathways, i.e., arginine biosynthesis, glycine, serine and threonine metabolism, and histidine metabolism. To sum up, the flavonoid extract of saffron floral bio-residues lowered the uric acid level, increased the antioxidant activity, and alleviated inflammatory symptoms of hyperuricemic rats, which may be related to its inhibition of xanthine oxidase activity and regulation of serum lipids and amino acids metabolism.
Rats
;
Animals
;
Flavonoids/pharmacology*
;
Uric Acid
;
Crocus
;
Xanthine Oxidase
;
Ethambutol/adverse effects*
;
Rats, Sprague-Dawley
;
Hyperuricemia/drug therapy*
;
Kidney
;
Antioxidants/pharmacology*
;
Plant Extracts/adverse effects*
;
Amino Acids
;
Adenine/adverse effects*
;
Lipids
2.Optimization of ethanol reflux extraction process of Ziziphi Spinosae Semen- Schisandrae Sphenantherae Fructus based on network pharmacology combined with response surface methodology.
Mian HUANG ; Yu-Meng SONG ; Xi-Yue WANG ; Bing-Tao ZHAI ; Jiang-Xue CHENG ; Xiao-Fei ZHANG ; Dong-Yan GUO
China Journal of Chinese Materia Medica 2023;48(4):966-977
The present study optimized the ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair by network pharmacology and Box-Behnken method. Network pharmacology and molecular docking were used to screen out and verify the potential active components of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus, and the process evaluation indexes were determined in light of the components of the content determination under Ziziphi Spinosae Semen and Schisandrae Sphenantherae Fructus in the Chinese Pharmacopoeia(2020 edition). The analytic hierarchy process(AHP) was used to determine the weight coefficient of each component, and the comprehensive score was calculated as the process evaluation index. The ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus was optimized by the Box-Behnken method. The core components of the Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair were screened out as spinosin, jujuboside A, jujuboside B, schisandrin, schisandrol, schisandrin A, and schisandrin B. The optimal extraction conditions obtained by using the Box-Behnken method were listed below: extraction time of 90 min, ethanol volume fraction of 85%, and two times of extraction. Through network pharmacology and molecular docking, the process evaluation indexes were determined, and the optimized process was stable, which could provide an experimental basis for the production of preparations containing Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus.
Ethanol
;
Molecular Docking Simulation
;
Network Pharmacology
;
Seeds/chemistry*
;
Ziziphus/chemistry*
;
Plant Extracts/chemistry*
;
Schisandra/chemistry*
;
Fruit/chemistry*
;
Technology, Pharmaceutical
3.Research progress on chemical constituents and pharmacological activities of Viola plants.
Min ZHANG ; You-Heng GAO ; Ye LI ; Ya-Qiong BI ; Chun-Hong ZHANG ; Min-Hui LI ; Zhi-Lai ZHAN
China Journal of Chinese Materia Medica 2023;48(5):1145-1175
There are 500 species of Viola(Violaceae) worldwide, among which 111 species are widely distributed in China and have a long medicinal history and wide varieties. According to the authors' statistics, a total of 410 compounds have been isolated and identified from plants of this genus, including flavonoids, terpenoids, phenylpropanoids, organic acids, nitrogenous compounds, sterols, saccharides and their derivatives, volatile oils and cyclotides. The medicinal materials from these plants boast anti-microbial, anti-viral, anti-oxidant and anti-tumor activities. This study systematically reviewed the chemical constituents and pharmacological activities of Viola plants to provide a basis for further research and clinical application.
Viola/chemistry*
;
Plant Extracts/pharmacology*
;
Flavonoids
;
Terpenes/pharmacology*
;
China
4.Mechanism of Cistanches Herba in treatment of cancer-related fatigue based on network pharmacology and experimental verification.
Shi-Lei ZHANG ; Jia-Li LIU ; Fu-Kai GONG ; Jian-Hua YANG ; Jun-Ping HU
China Journal of Chinese Materia Medica 2023;48(5):1330-1342
This study aimed to explore the mechanism of Cistanches Herba in the treatment of cancer-induced fatigue(CRF) by network pharmacology combined with in vivo and in vitro experiments to provide a theoretical basis for the clinical medication. The chemical constituents and targets of Cistanches Herba were searched from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The targets of CRF were screened out by GeneCards and NCBI. The common targets of traditional Chinese medicine and disease were selected to construct a protein-protein interaction(PPI) network, followed by Gene Ontology(GO) functional and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. A visual signal pathway rela-ted to Chinese medicine and disease targets was constructed. The CRF model was induced by paclitaxel(PTX) in mice. Mice were divided into a control group, a PTX model group, and low-and high-dose Cistanches Herba extract groups(250 and 500 mg·kg~(-1)). The anti-CRF effect in mice was evaluated by open field test, tail suspension test, and exhaustive swimming time, and the pathological morphology of skeletal muscle was evaluated by hematoxylin-eosin(HE) staining. The cancer cachexia model in C2C12 muscle cells was induced by C26 co-culture, and the cells were divided into a control group, a conditioned medium model group, and low-, medium-, and high-dose Cistanches Herba extract groups(62.5, 125, and 250 μg·mL~(-1)). The reactive oxygen species(ROS) content in each group was detected by flow cytometry, and the intracellular mitochondrial status was evaluated by transmission electron microscopy. The protein expression levels of hypoxia-inducible factor-1α(HIF-1α), BNIP3L, and Beclin-1 were detected by Western blot. Six effective constituents were screened out from Cistanches Herba. The core genes of Cistanches Herba in treating CRF were AKT1, IL-6, VEGFA, CASP3, JUN, EGFR, MYC, EGF, MAPK1, PTGS2, MMP9, IL-1B, FOS, and IL10, and the pathways related to CRF were AGE-RAGE and HIF-1α. Through GO enrichment analysis, it was found that the main biological functions involved were lipid peroxidation, nutrient deficiency, chemical stress, oxidative stress, oxygen content, and other biological processes. The results of the in vivo experiment showed that Cistanches Herba extract could significantly improve skeletal muscle atrophy in mice to relieve CRF. The in vitro experiment showed that Cistanches Herba extract could significantly reduce the content of intracellular ROS, the percentage of mitochondrial fragmentation, and the protein expression of Beclin-1 and increase the number of autophagosomes and the protein expression of HIF-1α and BNIP3L. Cistanches Herba showed a good anti-CRF effect, and its mechanism may be related to the key target proteins in the HIF-1α signaling pathway.
Animals
;
Mice
;
Cistanche
;
Network Pharmacology
;
Beclin-1
;
Reactive Oxygen Species
;
Plant Extracts
;
Drugs, Chinese Herbal/pharmacology*
;
Molecular Docking Simulation
;
Medicine, Chinese Traditional
;
Neoplasms/genetics*
5.Chemical constituents in Dolomiaea plants and their pharmacological activities: a review.
Yan-Hui LYU ; Wei CHEN ; Yan-Ping WEI ; Xin-Tong WEI ; Jie WANG ; Qian-Qian DING ; Zhan-Hong LI ; Ji-Xiang HE ; Xian-Peng ZU
China Journal of Chinese Materia Medica 2023;48(6):1463-1482
Dolomiaea plants are perennial herbs in the Asteraceae family with a long medicinal history. They are rich in chemical constituents, mainly including sesquiterpenes, phenylpropanoids, triterpenes, and steroids. The extracts and chemical constituents of Dolomiaea plants have various pharmacological effects, such as anti-inflammatory, antibacterial, antitumor, anti-gastric ulcer, hepatoprotective and choleretic effects. However, there are few reports on Dolomiaea plants. This study systematically reviewed the research progress on the chemical constituents and pharmacological effects of Dolomiaea plants to provide references for the further development and research of Dolomiaea plants.
Plant Extracts/pharmacology*
;
Asteraceae
;
Triterpenes
;
Sesquiterpenes/pharmacology*
;
Anti-Inflammatory Agents
;
Phytochemicals/pharmacology*
6.Two new prenylated 2-arylbenzofurans from roots of Artocarpus heterophyllus and their anti-respiratory burst activities.
Si CHEN ; Qin LUO ; Hai-Ping ZHAO ; Yu-Ye ZHU ; Wei JIANG ; Wen-Yan LI ; Gang REN
China Journal of Chinese Materia Medica 2023;48(6):1553-1557
Two prenylated 2-arylbenzofurans were isolated from roots of Artocarpus heterophyllus, with a combination of various chromatographic approaches, including ODS, MCI, Sephadex LH-20, and semipreparative high performance liquid chromatography(HPLC). They were identified as 5-[6-hydroxy-4-methoxy-5,7-bis(3-methylbut-2-enyl)benzofuran-2-yl]-1,3-benzenediol(1) and 5-[2H,9H-2,2,9,9-tetramethyl-furo[2,3-f]pyrano[2,3-h][1]benzopyran-6-yl]-1,3-benzenediol(2) with spectroscopic methods, such as HR-ESI-MS, IR, 1D NMR, and 2D NMR, and named artoheterins B(1) and C(2), respectively. The anti-respiratory burst activities of the two compounds were evaluated with rat polymorphonuclear neutrophils(PMNs) stimulated by phorbol 12-myristate 13-acetate(PMA). The results showed that 1 and 2 exhibited significant inhibitory effect on respiratory burst of PMNs with IC_(50) values of 0.27 and 1.53 μmol·L~(-1), respectively.
Rats
;
Animals
;
Molecular Structure
;
Artocarpus/chemistry*
;
Plant Extracts/pharmacology*
;
Magnetic Resonance Spectroscopy
;
Plant Roots/chemistry*
7.Flavonoid-Rich Extract of Oldenlandia diffusa (Willd.) Roxb. Inhibits Gastric Cancer by Activation of Caspase-Dependent Mitochondrial Apoptosis.
Jia-Yin LING ; Qiu-Lan WANG ; Hao-Nan LIANG ; Qing-Bo LIU ; Dong-Hong YIN ; Li LIN
Chinese journal of integrative medicine 2023;29(3):213-223
OBJECTIVE:
To evaluate the apoptosis and cycle arrest effects of Oldenlandia diffusa flavonoids on human gastric cancer cells, determine the action mechanisms in association with the mitochondrial dependent signal transduction pathway that controls production of reactive oxygen species (ROS), and evaluate the pharmacodynamics of a mouse xenotransplantation model to provide a reference for the use of flavonoids in prevention and treatment of gastric cancer.
METHODS:
Flavonoids were extracted by an enzymatic-ultrasonic assisted method and purified with D-101 resin. Bioactive components were characterized by high-performance liquid chromatography. Cell lines MKN-45, AGS, and GES-1 were treated with different concentrations of flavonoids (64, 96, 128, 160 µg/mL). The effect of flavonoids on cell viability was evaluated by MTT method, and cell nuclear morphology was observed by Hoechst staining. The apoptosis rate and cell cycle phases were measured by flow cytometry, the production of ROS was detected by laser confocal microscope, the mitochondrial membrane potential (MMP) were observed by fluorescence microscope, and the expression of apoptotic proteins related to activation of mitochondrial pathway were measured by immunoblotting. MKN-45 cells were transplanted into BALB/c nude mice to establish a xenograft tumor model. Hematoxylin and eosin staining was used to reveal the subcutaneous tumor tissue. The tumor volume and tumor weight were measured, the expression levels of proliferation markers proliferating cell nuclear antigen (PCNA) and Ki-67 were detected by immunohistochemistry, and the expression levels of CA72-4 were measured by enzyme linked immunosorbent assay.
RESULTS:
Oldenlandia diffusa flavonoids inhibited proliferation of MKN-45 and AGS human gastric cancer cells, arrested the cell cycle in G1/S phase, induced accumulation of ROS in the process of apoptosis, and altered MMP. In addition, flavonoids increased Apaf-1, Cleaved-Caspase-3, and Bax, and decreased Cyclin A, Cdk2, Bcl-2, Pro-Caspase-9, and Mitochondrial Cytochrome C (P<0.05). The MKN-45 cell mouse xenotransplantation model further clarified the growth inhibitory effect of flavonoids towards tumors. The expression levels of PCNA and Ki-67 decreased in each flavonoid dose group, the expression level of CA72-4 decreased (P<0.05).
CONCLUSION
Flavonoids derived from Oldenlandia diffusa can inhibit proliferation and induce apoptosis of human gastric cancer cells by activating the mitochondrial controlled signal transduction pathway.
Humans
;
Animals
;
Mice
;
Oldenlandia/metabolism*
;
Proliferating Cell Nuclear Antigen
;
Stomach Neoplasms
;
Flavonoids/pharmacology*
;
Reactive Oxygen Species/metabolism*
;
Mice, Nude
;
Ki-67 Antigen
;
Cell Line, Tumor
;
Apoptosis
;
Plant Extracts/pharmacology*
;
Caspases
;
Cell Proliferation
8.Effectiveness of Scutellaria baicalensis Georgi root in pregnancy-related diseases: A review.
Dan-Na FANG ; Chang-Wu ZHENG ; Ye-Ling MA
Journal of Integrative Medicine 2023;21(1):17-25
The root of Scutellaria baicalensis Georgi, also called Huangqin, is frequently used in traditional Chinese medicine. In ancient China, S. baicalensis root was used to clear heat, protect the fetus, and avoid a miscarriage for thousands of years. In modern times, pregnancy-related diseases can seriously affect maternal and fetal health, but few systematic studies have explored the mechanisms and potential targets of S. baicalensis root in the treatment of pregnancy-related diseases. Flavonoids (baicalein, wogonin and oroxylin A) and flavonoid glycosides (baicalin and wogonoside) are the main chemical components in the root of S. baicalensis. This study presents the current understanding of the major chemical components in the root of S. baicalensis, focusing on their traditional uses, potential therapeutic effects and ethnopharmacological relevance to pregnancy-related disorders. The mechanisms, potential targets and experimental models of S. baicalensis root for ameliorating pregnancy-related diseases, such as recurrent spontaneous abortion, preeclampsia, preterm birth, fetal growth restriction and gestational diabetes mellitus, are highlighted.
Infant, Newborn
;
Humans
;
Pregnancy
;
Female
;
Scutellaria baicalensis
;
Premature Birth/drug therapy*
;
Flavonoids
;
Plant Extracts/pharmacology*
;
Medicine, Chinese Traditional
;
Ethnopharmacology
;
China
9.In vivo antioxidant activity of rabbiteye blueberry (Vaccinium ashei cv. 'Brightwell') anthocyanin extracts.
Jing WANG ; Xingyu ZHAO ; Jiawei ZHENG ; Daniela D HERRERA-BALANDRANO ; Xiaoxiao ZHANG ; Wuyang HUANG ; Zhongquan SUI
Journal of Zhejiang University. Science. B 2023;24(7):602-616
Blueberries are rich in phenolic compounds including anthocyanins which are closely related to biological health functions. The purpose of this study was to investigate the antioxidant activity of blueberry anthocyanins extracted from 'Brightwell' rabbiteye blueberries in mice. After one week of adaptation, C57BL/6J healthy male mice were divided into different groups that were administered with 100, 400, or 800 mg/kg blueberry anthocyanin extract (BAE), and sacrificed at different time points (0.1, 0.5, 1, 2, 4, 8, or 12 h). The plasma, eyeball, intestine, liver, and adipose tissues were collected to compare their antioxidant activity, including total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity and glutathione-peroxidase (GSH-PX/GPX) content, and the oxidative stress marker malondialdehyde (MDA) level. The results showed that blueberry anthocyanins had positive concentration-dependent antioxidant activity in vivo. The greater the concentration of BAE, the higher the T-AOC value, but the lower the MDA level. The enzyme activity of SOD, the content of GSH-PX, and messenger RNA (mRNA) levels of Cu,Zn-SOD, Mn-SOD, and GPX all confirmed that BAE played an antioxidant role after digestion in mice by improving their antioxidant defense. The in vivo antioxidant activity of BAE indicated that blueberry anthocyanins could be developed into functional foods or nutraceuticals with the aim of preventing or treating oxidative stress-related diseases.
Male
;
Mice
;
Animals
;
Antioxidants/pharmacology*
;
Blueberry Plants
;
Anthocyanins/pharmacology*
;
Mice, Inbred C57BL
;
Superoxide Dismutase
;
Plant Extracts/pharmacology*
;
Superoxide Dismutase-1
10.Spectrum-effect relationship of total anthraquinone extract of Cassia seeds against fluorouracil-induced liver injury in mice.
Heng WANG ; Mengqi LI ; Shenxing LI ; Jinggan SHI ; Li HUANG ; Suoting CHENG ; Chuncai ZOU ; Haiyan YAN
Journal of Southern Medical University 2023;43(5):825-831
OBJECTIVE:
To investigate the spectrum-effect relationship between the total anthraquinone extract of Cassia seeds and fluorouracil (5-Fu)-induced liver injury in mice and identify the effective components in the extract.
METHODS:
A mouse model of liver injury was established by intraperitoneal injection of 5-Fu, with bifendate as the positive control. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and myeloperoxidase (MPO), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) in the liver tissue were detected to investigate the effect of the total anthraquinone extract of Cassia seeds (0.4, 0.8 and 1.6 g/kg) on liver injury induced by 5-Fu. HPLC fingerprints of 10 batches of the total anthraquinone extracts were established to analyze the spectrum- effectiveness of the extract against 5- Fu- induced liver injury in mice and screen the effective components using the grey correlation method.
RESULTS:
The 5- Fu- treated mice showed significant differences in liver function parameters from the normal control mice (P < 0.05), suggesting successful modelling. Compared with those in the model group, serum ALT and AST activities were decreased, SOD and T- AOC activities significantly increased, and MPO level was significantly lowered in the mice treated with the total anthraquinone extract (all P < 0.05). HPLC fingerprints of the 31 components in the total anthraquinone extract of Cassia seeds showed good correlations with the potency index of 5-Fu-induced liver injury but with varying correlation strengths. The top 15 components with known correlations included aurantio-obtusina (peak 6), rhein (peak 11), emodin (peak 22), chrysophanol (peak 29) and physcion (peak 30).
CONCLUSION
The effective components in the total anthraquinone extract of Cassia seeds, including aurantio-obtusina, rhein, emodin, chrysophanol, and physcion, are coordinated to produce protective effects against 5-Fu-induced liver injury in mice.
Animals
;
Mice
;
Emodin
;
Cassia
;
Chemical and Drug Induced Liver Injury, Chronic
;
Anthraquinones
;
Antioxidants
;
Fluorouracil/adverse effects*
;
Plant Extracts/pharmacology*

Result Analysis
Print
Save
E-mail