1.Mechanism of sodium valproate in inhibiting ferroptosis of bone marrow mesenchymal stem cells via the adenosine monophosphate-activated protein kinase/Sirtuin 1 axis.
Qingsong GU ; Jianqiao LI ; Yuhu CHEN ; Linhui WANG ; Yiheng LI ; Ziru WANG ; Yicong WANG ; Min YANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(2):215-223
OBJECTIVE:
To investigate the effects of sodium valproate (VPA) in inhibiting Erastin-induced ferroptosis in bone marrow mesenchymal stem cells (BMSCs) and its underlying mechanisms.
METHODS:
BMSCs were isolated from bone marrow of 8-week-old Spragur Dawley rats and identified [cell surface antigens CD90, CD44, and CD45 were analyzed by flow cytometry, and osteogenic and adipogenic differentiation abilities were assessed by alizarin red S (ARS) and oil red O staining, respectively]. Cells of passage 3 were used for the Erastin-induced ferroptosis model, with different concentrations of VPA for intervention. The optimal drug concentration was determined using the cell counting kit 8 assay. The experiment was divided into 4 groups: group A, cells were cultured in osteogenic induction medium for 24 hours; group B, cells were cultured in osteogenic induction medium containing optimal concentration Erastin for 24 hours; group C, cells were cultured in osteogenic induction medium containing optimal concentration Erastin and VPA for 24 hours; group D, cells were cultured in osteogenic induction medium containing optimal concentration Erastin and VPA, and 8 μmol/L EX527 for 24 hours. The mitochondrial state of the cells was evaluated, including the levels of malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS). Osteogenic capacity was assessed by alkaline phosphatase (ALP) activity and ARS staining. Western blot analysis was performed to detect the expressions of osteogenic-related proteins [Runt-related transcription factor 2 (RUNX2) and osteopontin (OPN)], ferroptosis-related proteins [glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and solute carrier family 7 member 11 (SLC7A11)], and pathway-related proteins [adenosine monophosphate-activated protein kinase (AMPK) and Sirtuin 1 (SIRT1)].
RESULTS:
The cultured cells were identified as BMSCs. VPA inhibited Erastin-induced ferroptosis and the decline of osteogenic ability in BMSCs, acting through the activation of the AMPK/SIRT1 pathway. VPA significantly reduced the levels of ROS and MDA in Erastin-treated BMSCs and significantly increased GSH levels. Additionally, the expression levels of ferroptosis-related proteins (GPX4, FTH1, and SLC7A11) significantly decreased. VPA also upregulated the expressions of osteogenic-related proteins (RUNX2 and OPN), enhanced mineralization and osteogenic differentiation, and increased the expressions of pathway-related proteins (AMPK and SIRT1). These effects could be reversed by the SIRT1 inhibitor EX527.
CONCLUSION
VPA inhibits ferroptosis in BMSCs through the AMPK/SIRT1 axis and promotes osteogenesis.
Mesenchymal Stem Cells/metabolism*
;
Ferroptosis/drug effects*
;
Animals
;
Valproic Acid/pharmacology*
;
Rats
;
Rats, Sprague-Dawley
;
Sirtuin 1/metabolism*
;
Cell Differentiation/drug effects*
;
Cells, Cultured
;
AMP-Activated Protein Kinases/metabolism*
;
Osteogenesis/drug effects*
;
Piperazines/pharmacology*
;
Bone Marrow Cells/cytology*
;
Reactive Oxygen Species/metabolism*
;
Signal Transduction/drug effects*
2.Role and mechanism of ubiquitin-specific protease 35 in ferroptosis of rheumatoid arthritis-fibroblast like synoviocytes.
Lianghua FENG ; Lirong HONG ; Yujia CHEN ; Xueming CAI
Journal of Peking University(Health Sciences) 2025;57(5):919-925
OBJECTIVE:
To elucidate the role and underlying mechanism of ubiquitin-specific protease 35 (USP35) in ferroptosis of rheumatoid arthritis-fibroblast like synoviocytes (RA-FLS), thereby enhancing our comprehension of the pathogenesis of RA and identifying potential therapeutic targets for its treatment.
METHODS:
(1) RA-FLS were cultured in vitro and transduced with lentiviral vectors to establish stable cell lines: A USP35-knockdown line (short hairpin ribonucleic acid of USP35, shUSP35) and its control (negtive control of short hairpin ribonucleic acid, shNC), as well as a overexpression of USP35 line (USP35 OE) and its control (Vector). To investigate the role of USP35 in ferroptosis regulation, a ferroptosis model was induced in RA-FLS by treatment with 1 μmol/L Erastin. The cells were divided into six groups: shNC, shNC + Erastin, shUSP35 + Erastin, Vector, Vector + Erastin, and USP35 OE + Erastin. (2) Cell viability was detected using the cell counting kit-8 (CCK-8). (3) Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione/glutathione disulfide (GSH/GSSG) ratios, and Ferrous ion (Fe2+) levels were measured using specific assay kits to evaluate oxidative stress, lipid peroxidation, and glutathione redox status in the cells. (4) Protein expression levels of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) were detected using Western blotting to investigate their potential involvement in USP35-mediated ferroptosis regulation.
RESULTS:
(1) Compared with the shNC +Erastin group, the cell viability of the shUSP35+Erastin group was significantly decreased (P < 0.001), while it was notably increased in the USP35 OE+Erastin group compared with the Vector+Erastin group (P < 0.001). These findings indicated that USP35 could alleviate the inhibitory effect of Erastin on RA-FLS cell viability. (2) In comparison to the shNC+Erastin group, the levels of ROS (P < 0.001), MDA (P < 0.05), and Fe2+ (P < 0.001) were significantly elevated, and the GSH/GSSG ratio was increased (P < 0.05) in the shUSP35+Erastin group. Conversely, the levels of ROS (P < 0.001), MDA (P < 0.05), and Fe2+ (P < 0.05) were significantly decreased, and the GSH/GSSG ratio was decreased (P < 0.05) in the USP35 OE+Erastin group compared with the Vector+Erastin group. These results suggested that USP35 could inhibit Erastin-induced oxidative stress and lipid peroxidation in RA-FLS. (3) In Erastin-induced RA-FLS, the expression of USP35 was positively correlated with the protein levels of SLC7A11 and GPX4, indicating a potential mechanism by which USP35 regulated ferroptosis in these cells.
CONCLUSION
USP35 inhibits ferroptosis in RA-FLS, potentially through the increased expression of SLC7A11 and GPX4.
Ferroptosis
;
Humans
;
Arthritis, Rheumatoid/metabolism*
;
Synoviocytes/pathology*
;
Reactive Oxygen Species/metabolism*
;
Ubiquitin-Specific Proteases/metabolism*
;
Fibroblasts/pathology*
;
Cell Survival
;
Piperazines/pharmacology*
;
Endopeptidases/metabolism*
;
Cells, Cultured
;
Cell Line
;
Amino Acid Transport System y+
3.Olaparib and niraparib as maintenance therapy in patients with newly diagnosed and platinum-sensitive recurrent ovarian cancer: A single-center study in China.
Dengfeng WANG ; Xunwei SHI ; Jiao PEI ; Can ZHANG ; Liping PENG ; Jie ZHANG ; Jing ZHENG ; Chunrong PENG ; Xiaoqiao HUANG ; Xiaoshi LIU ; Hong LIU ; Guonan ZHANG
Chinese Medical Journal 2025;138(10):1194-1201
BACKGROUND:
Poly adenosine-diphosphate-ribose polymerase (PARP) inhibitors (PARPi) have been approved to act as first-line maintenance (FL-M) therapy and as platinum-sensitive recurrent maintenance (PSR-M) therapy for ovarian cancer in China for >5 years. Herein, we have analyzed the clinical-application characteristics of olaparib and niraparib in ovarian cancer-maintenance therapy in a real-world setting to strengthen our understanding and promote their rational usage.
METHODS:
A retrospective chart review identified patients with newly diagnosed or platinum-sensitive recurrent ovarian cancer, who received olaparib or niraparib as maintenance therapy at Sichuan Cancer Hospital between August 1, 2018, and December 31, 2021. Patient medical records were reviewed. We grouped and analyzed patients based on the type of PARPi they used (the olaparib group and the niraparib group) and the line of PARPi maintenance therapy (the FL-M setting and the PSR-M setting). The primary endpoint was the 24-month progression-free survival (PFS) rate.
RESULTS:
In total, 131 patients (olaparib: n = 67, 51.1%; niraparib: n = 64, 48.9%) were enrolled. Breast cancer susceptibility genes ( BRCA ) mutations ( BRCA m) were significantly less common in the niraparib group than in the olaparib group [9.4% (6/64) vs . 62.7% (42/67), P <0.001], especially in the FL-M setting [10.4% (5/48) vs . 91.4% (32/35), P <0.001]. The 24-month progression-free survival (PFS) rates in the FL-M and PSR-M settings were 60.4% and 45.7%, respectively. In patients with BRCA m, the 24-month PFS rates in the FL-M and PSR-M settings were 62.2% and 72.7%, respectively.
CONCLUSIONS
Olaparib and niraparib were effective in patients with ovarian cancer without any new safety signals except for skin pigmentation. In patients with BRCA m, the 24-month PFS of the PARPi used in the PSR-M setting was even higher than that used in the FL-M setting.
Humans
;
Female
;
Ovarian Neoplasms/drug therapy*
;
Piperazines/therapeutic use*
;
Middle Aged
;
Retrospective Studies
;
Phthalazines/therapeutic use*
;
Piperidines/therapeutic use*
;
Indazoles/therapeutic use*
;
Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use*
;
Adult
;
Aged
;
China
;
Neoplasm Recurrence, Local/drug therapy*
;
Progression-Free Survival
4.Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma.
Xuejie HUAN ; Jiangang LI ; Zhaobin CHU ; Hongliang ZHANG ; Lei CHENG ; Peng LUN ; Xixun DU ; Xi CHEN ; Qian JIAO ; Hong JIANG
Neuroscience Bulletin 2025;41(4):569-582
Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.
Ferroptosis/drug effects*
;
Humans
;
Iron/metabolism*
;
Glioblastoma/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Homeostasis/physiology*
;
Ferritins/metabolism*
;
Brain Neoplasms/genetics*
;
Mutation
;
Astrocytes/drug effects*
;
Cell Line, Tumor
;
Piperazines/pharmacology*
;
Quaternary Ammonium Compounds/pharmacology*
;
Ferric Compounds
5.First evidence of olaparib maintenance therapy in patients with newly diagnosed homologous recombination deficient positive/BRCA wild-type ovarian cancer: real-world multicenter study.
Jing LI ; Youguo CHEN ; Mian HE ; Xiaoxiang CHEN ; Hao WEN ; Yu KANG ; Kaijiang LIU ; Ge LOU ; Xipeng WANG ; Qinglian WEN ; Li WANG ; Zhongqiu LIN
Frontiers of Medicine 2024;18(6):1026-1034
Although olaparib has demonstrated substantial clinical benefits as maintenance therapy in BRCA mutation-carrying women with newly diagnosed advanced ovarian cancer, its effectiveness in patients without BRCA mutations remains poorly investigated. This study aims to provide the first evidence on the efficacy of mono-olaparib maintenance therapy in such context. Using real-world data from 11 high-volume tertiary care centers in China, a retrospective cohort study was conducted to assess the efficacy and safety of olaparib as first-line maintenance therapy in patients with BRCA wild-type ovarian cancer. The primary objective was 1-year progression-free survival rate. Safety was also evaluated. Fifty patients with a median age of 54 years were included, and all of them tested negative for BRCA mutations but positive for homologous recombination deficiency (HRD). The 1-year PFS rate was 75.2% (95% CI, 63.4 to 89.2), and the median PFS was 21.0 months (95% CI, 13.8 to 28.2). All the patients received olaparib at a starting dose of 300 mg twice daily, and none experienced serious adverse events (AEs). Eight (16%) patients had dose adjustment, but none discontinued olaparib treatment due to AEs. We provide the first evidence that mono-olaparib could be a safe and effective maintenance treatment option for patients newly diagnosed with HRD-positive/BRCA wild-type ovarian cancer.
Humans
;
Female
;
Phthalazines/adverse effects*
;
Piperazines/administration & dosage*
;
Middle Aged
;
Ovarian Neoplasms/genetics*
;
Retrospective Studies
;
Adult
;
Aged
;
Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage*
;
China
;
Maintenance Chemotherapy
;
BRCA2 Protein/genetics*
;
Antineoplastic Agents/adverse effects*
;
Progression-Free Survival
;
BRCA1 Protein/genetics*
7.Expert consensus on ensartinib in the treatment of anaplastic lymphoma kinase-positive non-small cell lung cancer.
Chinese Journal of Oncology 2022;44(4):297-307
The mutation rate of anaplastic lymphoma kinase (ALK) in patients with non-small cell lung cancer is 3% to 7%. Due to its low mutation rate and better long-term survival compared with epidermal growth factor receptor-positive non-small cell lung cancer patients, therefore, it's called "diamond mutation". At present, there are three generations of ALK tyrosine kinase inhibitor (TKI) drugs in the world. The first-generation ALK-TKI drug approved in China is crizotinib, and the second-generation drugs are alectinib, ceritinib and ensartinib. Among them, ensartinib is an ALK-TKI domestically developed, and its efficacy is similar to that of alectinib. The main adverse event is transient rash, and compliance to ensartinib is better from the perspective of long-term survival of patients. The manifestation of rash caused by ensartinib is different from that of other ALK-TKI drugs. In order to facilitate clinical application and provide patients with more treatment options, under the guidance of the Committee of Cancer Rehabilitation and Palliative Care of China Anti-Cancer Association, this article collects and summarizes the common adverse reactions of ensartinib. Based on the clinical practice, a clear adverse classification and specific treatment plan are formulated, in order to provide a corresponding reference for clinicians to make more comprehensive clinical decisions.
Anaplastic Lymphoma Kinase
;
Carbazoles/adverse effects*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Consensus
;
Exanthema/drug therapy*
;
Humans
;
Lung Neoplasms/pathology*
;
Piperazines
;
Protein Kinase Inhibitors/adverse effects*
;
Pyridazines
8.Abivertinib inhibits megakaryocyte differentiation and platelet biogenesis.
Jiansong HUANG ; Xin HUANG ; Yang LI ; Xia LI ; Jinghan WANG ; Fenglin LI ; Xiao YAN ; Huanping WANG ; Yungui WANG ; Xiangjie LIN ; Jifang TU ; Daqiang HE ; Wenle YE ; Min YANG ; Jie JIN
Frontiers of Medicine 2022;16(3):416-428
Abivertinib, a third-generation tyrosine kinase inhibitor, is originally designed to target epidermal growth factor receptor (EGFR)-activating mutations. Previous studies have shown that abivertinib has promising antitumor activity and a well-tolerated safety profile in patients with non-small-cell lung cancer. However, abivertinib also exhibited high inhibitory activity against Bruton's tyrosine kinase and Janus kinase 3. Given that these kinases play some roles in the progression of megakaryopoiesis, we speculate that abivertinib can affect megakaryocyte (MK) differentiation and platelet biogenesis. We treated cord blood CD34+ hematopoietic stem cells, Meg-01 cells, and C57BL/6 mice with abivertinib and observed megakaryopoiesis to determine the biological effect of abivertinib on MK differentiation and platelet biogenesis. Our in vitro results showed that abivertinib impaired the CFU-MK formation, proliferation of CD34+ HSC-derived MK progenitor cells, and differentiation and functions of MKs and inhibited Meg-01-derived MK differentiation. These results suggested that megakaryopoiesis was inhibited by abivertinib. We also demonstrated in vivo that abivertinib decreased the number of MKs in bone marrow and platelet counts in mice, which suggested that thrombopoiesis was also inhibited. Thus, these preclinical data collectively suggested that abivertinib could inhibit MK differentiation and platelet biogenesis and might be an agent for thrombocythemia.
Acrylamides/pharmacology*
;
Animals
;
Blood Platelets/drug effects*
;
Cell Differentiation
;
Megakaryocytes/drug effects*
;
Mice
;
Mice, Inbred C57BL
;
Piperazines/pharmacology*
;
Pyrimidines/pharmacology*
9.Berberine inhibits erastin-induced ferroptosis of mouse hippocampal neuronal cells possibly by activating the Nrf2-HO-1/GPX4 pathway.
Qing Yang HUANG ; Dong Dong JI ; Xiu Yun TIAN ; Lin Yan MA ; Xiao Jin SUN
Journal of Southern Medical University 2022;42(6):937-943
OBJECTIVE:
To explore the mechanism by which berberine inhibits ferroptosis of mouse hippocampal neuronal cells (HT22).
METHODS:
Cultured HT22 cells were pretreated with 30 or 60 μmol/L berberine for 2 h before exposure to 0.5 μmol/L erastin for 8 h, and the cell proliferation, intracellular ferric iron level, changes in intracellular reactive oxygen species (ROS) and cell apoptosis were detected using CCK-8, Fe2+ fluorescent probe, fluorescent dye (DAPI) and fluorescent probe (H2DCFH-DA). RT-qPCR and Western blotting were used to detect the mRNA and protein expressions of Nrf2, HO-1 and GPX4 in the cells. We further tested the effects of treatments with 2 μmol/L ML385 (a Nrf2 inhibitor), 60 μmol/L berberine and erastin in the cells to explore the protective mechanism of berberine against erastin-induced ferroptosis in the neuronal cells.
RESULTS:
Treatment with 0.5 μmol/L erastin significantly lowered the viability of HT22 cells (P < 0.05) and increased the production of ROS, cell apoptosis rate and ferric iron level (P < 0.05). Pretreatment with 30 and 60 μmol/L berberine both significantly increased the vitality of erastin-exposed cells (P < 0.05) and lowered the levels of intracellular ROS and ferric iron content (P < 0.05). RT-qPCR and Western blotting showed that berberine obviously promoted the expressions of Nrf2, HO-1 and GPX4 in the cells (P < 0.05), and treatment with ML385 significantly inhibited the Nrf2-HO-1/GPX4 pathway, increased intracellular ROS and ferric iron contents and mitigated the protective effect of berberine against erastin-induced ferroptosis (P < 0.05).
CONCLUSION
Berberine can inhibit erastin-induced ferroptosis in HT22 cells possibly by activating the Nrf2-HO-1/ GPX4 pathway.
Animals
;
Berberine/pharmacology*
;
Ferroptosis
;
Fluorescent Dyes
;
Hippocampus/metabolism*
;
Iron/metabolism*
;
Mice
;
NF-E2-Related Factor 2/metabolism*
;
Piperazines
;
Reactive Oxygen Species/metabolism*
10.Therapeutic Effect of Imatinib Made in Real World to Newly Diagnosed Chronic Myeloid Leukemia.
Yu-Fan YE ; Xiao-Ming LYU ; Hai-Liang LI
Journal of Experimental Hematology 2021;29(2):456-461
OBJECTIVE:
To evaluate the clinical efficacy and safety of domestic imatinib (made in China) in patients with newly diagnosed chronic myeloid leukemia chronic phase(CML-CP).
METHODS:
Fifty-seven newly diagnosed CML-CP patients who did not receive any other anti-CML treatment were treated by domestic imatinib 400 mg once a day. The hematological, cytogenetic and molecular reactions and safety were observed and evaluated after 3, 6 and 12 months of treatment.
RESULTS:
Fifty-six patients were treated for ≥3 and 6 months, among which 50 patients were treated for ≥12 months. After 3 months of treatment, 49 patients underwent hematological examination, 47 patients (95.9%) achieved complete hematological response (CHR), 49 patients underwent cytogenetic examination, 39 patients (79.6%) achieved major cytogenetic response (MCyR), and 12 patients (24.5%) achieved complete cytogenetic response (CCyR). 49 patients underwent the level of BCR-ABL test, including 41 patients (83.7%) with BCR-ABL
CONCLUSION
In the real world, Domestics imatinib mesylate is effective and safe in the treatment of newly diagnosed CML-CP patients, but long-term follow-up data are still necessary to verify its long-term efficacy.
Antineoplastic Agents/therapeutic use*
;
Benzamides/therapeutic use*
;
China
;
Fusion Proteins, bcr-abl/genetics*
;
Humans
;
Imatinib Mesylate/therapeutic use*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Piperazines
;
Pyrimidines/therapeutic use*
;
Treatment Outcome

Result Analysis
Print
Save
E-mail