1.Biological characteristics and translational research of dental stem cells.
Qianmin OU ; Zhengshi LI ; Luhan NIU ; Qianhui REN ; Xinyu LIU ; Xueli MAO ; Songtao SHI
Journal of Peking University(Health Sciences) 2025;57(5):827-835
Dental stem cells (DSCs), a distinct subset of mesenchymal stem cells (MSCs), are isolated from dental tissues, such as dental pulp, exfoliated deciduous teeth, periodontal ligament, and apical papilla. They have emerged as a promising source of stem cell therapy for tissue regeneration and autoimmune disorders. The main types of DSCs include dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), and stem cells from apical papilla (SCAP). Each type exhibits distinct advantages: easy access via minimally invasive procedures, multi-lineage differentiation potential, and excellent ethical acceptability. DSCs have demonstrated outstanding clinical efficacy in oral and maxillofacial regeneration, and their long-term safety has been verified. In oral tissue regeneration, DSCs are highly effective in oral tissue regeneration for critical applications such as the restoration of dental pulp vitality and periodontal tissue repair. A defining advantage of DSCs lies in their ability to integrate with host tissues and promote physiological regeneration, which render them a better option for oral tissue regenerative therapies. Beyond oral applications, DSCs also exhibit promising potential in the treatment of systemic diseases, including type Ⅱ diabetes and autoimmune diseases due to their immunomodulatory effects. Moreover, extracellular vesicles (EVs) derived from DSCs act as critical mediators for DSCs' paracrine functions. Possessing regulatory properties similar to their parental cells, EVs are extensively utilized in research targeting tissue repair, immunomodulation, and regenerative therapy-offering a "cell-free" strategy to mitigate the limitations associated with cell-based therapies. Despite these advancements, standardizing large-scale manufacturing, maintaining strict quality control, and clarifying the molecular mechanisms underlying the interaction of DSCs and their EVs with recipient tissues remain major obstacles to the clinical translation of these treatments into broad clinical use. Addressing these barriers will be critical to enhancing their clinical applicability and therapeutic efficacy. In conclusion, DSCs and their EVs represent a transformative approach in regenerative medicine, and increasing clinical evidence supports their application in oral and systemic diseases. Continuous innovation remains essential to unlocking the widespread clinical potential of DSCs.
Humans
;
Dental Pulp/cytology*
;
Translational Research, Biomedical
;
Mesenchymal Stem Cells/cytology*
;
Periodontal Ligament/cytology*
;
Stem Cells/cytology*
;
Regeneration
;
Tooth, Deciduous/cytology*
;
Cell Differentiation
;
Tissue Engineering/methods*
;
Regenerative Medicine
2.Adhesive and injectable hydrogel microspheres for NRF2-mediated periodontal bone regeneration.
Yu WANG ; Shanshan JIN ; Yaru GUO ; Yilong LU ; Xuliang DENG
International Journal of Oral Science 2025;17(1):7-7
Regenerating periodontal bone defect surrounding periodontal tissue is crucial for orthodontic or dental implant treatment. The declined osteogenic ability of periodontal ligament stem cells (PDLSCs) induced by inflammation stimulus contributes to reduced capacity to regenerate periodontal bone, which brings about a huge challenge for treating periodontitis. Here, inspired by the adhesive property of mussels, we have created adhesive and mineralized hydrogel microspheres loaded with traditional compound cordycepin (MMS-CY). MMS-CY could adhere to the surface of alveolar bone, then promote the migration capacity of PDLSCs and thus recruit them to inflammatory periodontal tissues. Furthermore, MMS-CY rescued the impaired osteogenesis and ligament-forming capacity of PDLSCs, which were suppressed by the inflammation stimulus. Moreover, MMS-CY also displayed the excellent inhibitory effect on the osteoclastic activity. Mechanistically, MMS-CY inhibited the premature senescence induced by the inflammation stimulus through the nuclear factor erythroid 2-related factor (NRF2) pathway and reducing the DNA injury. Utilizing in vivo rat periodontitis model, MMS-CY was demonstrated to enhance the periodontal bone regeneration by improving osteogenesis and inhibiting the osteoclastic activity. Altogether, our study indicated that the multi-pronged approach is promising to promote the periodontal bone regeneration in periodontitis condition by reducing the inflammation-induced stem cell senescence and maintaining bone homeostasis.
Animals
;
Bone Regeneration/drug effects*
;
Rats
;
Periodontal Ligament/cytology*
;
Microspheres
;
NF-E2-Related Factor 2
;
Hydrogels
;
Periodontitis/therapy*
;
Osteogenesis/drug effects*
;
Disease Models, Animal
;
Stem Cells
;
Male
;
Rats, Sprague-Dawley
;
Humans
3.Exploring the mechanical and biological interplay in the periodontal ligament.
Xinyu WEN ; Fang PEI ; Ying JIN ; Zhihe ZHAO
International Journal of Oral Science 2025;17(1):23-23
The periodontal ligament (PDL) plays a crucial role in transmitting and dispersing occlusal force, acting as mechanoreceptor for muscle activity during chewing, as well as mediating orthodontic tooth movement. It transforms mechanical stimuli into biological signals, influencing alveolar bone remodeling. Recent research has delved deeper into the biological and mechanical aspects of PDL, emphasizing the importance of understanding its structure and mechanical properties comprehensively. This review focuses on the latest findings concerning both macro- and micro- structural aspects of the PDL, highlighting its mechanical characteristics and factors that influence them. Moreover, it explores the mechanotransduction mechanisms of PDL cells under mechanical forces. Structure-mechanics-mechanotransduction interplay in PDL has been integrated ultimately. By providing an up-to-date overview of our understanding on PDL at various scales, this study lays the foundation for further exploration into PDL-related biomechanics and mechanobiology.
Periodontal Ligament/cytology*
;
Humans
;
Biomechanical Phenomena
;
Mechanotransduction, Cellular/physiology*
;
Stress, Mechanical
4.Ginsenoside Rb3 regulates the phosphorrylated extracellular signal-regulated kinase signaling pathway to alleviate inflammatory responses and promote osteogenesis in rats with periodontitis.
Xueying ZHANG ; Xin MENG ; Zhizhen LIU ; Kang ZHANG ; Honghai JI ; Minmin SUN
West China Journal of Stomatology 2025;43(2):236-248
OBJECTIVES:
To explore the promoting effect of ginsenoside Rb3 (Rb3) on osteogenesis in periodontitis environment, and to explain its mechanism.
METHODS:
Human periodontal ligament stem cells (hPDLSCs) were cultured by tissue block method and identified by flow cytometry. Cell counting kit-8 (CCK8) method and calcein acetoxymethyl ester/propidium iodide staining were used to detect the effect of Rb3 on the viability of hPDLSCs cells. In vitro cell experiments were divided into control group, 10 μg/mL lipopolysaccharides (LPS) group, 10 μg/mL LPS+100 μmol/L Rb3 group and 10 μg/mL LPS+200 μmol/L Rb3 group. Alkaline phosphatase (ALP) staining was used to detect the ALP activity of hPDLSCs in each group after osteogenesis induction. The expression of hPDLSCs interleukin-6 (IL-6), interleukin-8 (IL-8), runt-related transcription factor 2 (RUNX2) and transforming growth factor-β (TGF-β)genes in each group after osteogenesis was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) method. Western blot was used to detect the protein expression of hPDLSCs phosphorrylated extracellular signal-regulated kinase (p-ERK) in each group. Sprague-Dawley rats were randomly divided into the control group, ligation group and ligation+Rb3 group. The left molar-maxillary tissue was subjected to micro-computed tomography (micro-CT) scanning. After the scanning, the left molar-maxilla was made into periodontal tissue sections. Hematoxylin-eosin (HE) staining was used to detect the infiltration and loss of adhesion of inflammatory cells. Masson staining was used to detect the destruction of gingival collagen fibers. Immunofluorescence staining was used to detect the protein expression of RUNX2 and p-ERK. The expression of TGF-β in rat gingival tissue was detected by qRT-PCR. The protein expression of IL-6 in peripheral serum of rats was detected by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was used to detect the proportion of Treg cells in rat heart blood. The experimental data were statistically analyzed by Graph Pad Prism10.1.2 software.
RESULTS:
Rb3 had no effect on the cell activity of hPDLSCs. The results of qRT-PCR and ALP staining showed that Rb3 could inhibit the gene expression of IL-6 and IL-8 in inflammatory hPDLSCs, promote TGF-β gene and promote the osteogenic differentiation of inflammatory hPDLSCs. Western blot showed that Rb3 inhibited the protein expression of inflammatory hPDLSCs p-ERK. The results from micro-CT, Masson staining, and HE staining demonstrated that Rb3 promotes alveolar bone formation in rats with periodontitis, while simultaneously inhibiting the destruction of periodontal fibrous tissue, reducing attachment loss, and suppressing inflammatory cell infiltration. The results of flow cytometry showed that Rb3 could promote the differentiation of Treg cells in peripheral blood of periodontitis rats. The results of ELISA and qRT-PCR showed that Rb3 could inhibit the protein expression of IL-6 and promote the gene expression of TGF-β in periodontitis rats. Immunofluorescence results showed that Rb3 could promote the protein expression of RUNX2 and inhibit the protein expression of p-ERK in periodontitis rats.
CONCLUSIONS
Rb3 can reduce the inflammatory reaction of periodontal tissues in periodontitis rats, and promote the osteogenic differentiation of hPDLSCs by regulating p-ERK pathways.
Animals
;
Ginsenosides/pharmacology*
;
Osteogenesis/drug effects*
;
Periodontitis/metabolism*
;
Rats
;
Periodontal Ligament/cytology*
;
Humans
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Stem Cells/drug effects*
;
Interleukin-6/metabolism*
;
Rats, Sprague-Dawley
;
Interleukin-8/metabolism*
;
Cells, Cultured
;
MAP Kinase Signaling System/drug effects*
;
Transforming Growth Factor beta/metabolism*
;
Signal Transduction
;
Male
;
Phosphorylation
;
Lipopolysaccharides
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Alkaline Phosphatase/metabolism*
5.Investigating the protective effect of naringenin on hydrogen peroxide induced oxidative damage of human periodontal ligament stem cells by regulating the forkhead box protein O-1/β-catenin pathway.
Li ZHANG ; Shiyuan PENG ; Feiyang TANG ; Jingwei JIAN ; Shuosheng YUAN ; Xiaomei XU
West China Journal of Stomatology 2025;43(4):559-569
OBJECTIVES:
Investigating the protective effect of naringenin (NAR) on the osteogenic potential of human periodontal ligament stem cells (hPDLSCs) under oxidative stress and its related mechanisms.
METHODS:
The oxidative damage model of hPDLSCs was established using hydrogen peroxide (H2O2) andthe hPDLSCs were treated with different concentrations of NAR and 0.5 μmol/L forkhead box protein O-1 (FOXO1) inhibitor AS1842856. After that, the cell counting kit-8 (CCK8) was used to determine the optimal concentrations of H2O2 and NAR. The alkaline phosphatase (ALP) staining and real time fluorescent quantitative reverse transcription polymerase chain reaction (qRT-PCR) were employed to assess the expression of ALP, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) in hPDLSCs of each group. The enzyme-linked immunosorbent assay (ELISA) and 2',7'-dichlorofluorescin diacetate (DCFH-DA) staining were utilized to evaluate the expression of reactive oxygen species (ROS), malondialdehyde (MDA) and lactate dehydrogenase (LDH) in hPDLSCs. Meanwhile, qRT-PCR and western blot were used to detect the expression levels of FOXO1 and β-catenin, both are pathway related genes and proteins.
RESULTS:
H2O2 exposure led to an increase in oxidative damage in hPDLSCs, characterized by a rise in intracellular ROS levels and increased expression of MDA and LDH (P<0.05). At the same time, the osteogenic differentiation ability of hPDLSCs decreased, as evidenced by lighter ALP staining and reduced expression levels of osteogenic differentiation-related genes ALP, RUNX2 and OCN (P<0.05). Co-treatment with NAR alleviated the oxidative damage in hPDLSCs, enhanced their antioxidant capacity, and restored their osteogenic ability. The FOXO1 inhibitor AS1842856 downregulated the expression of β-catenin (P<0.05) and significantly diminished both the antioxidant effect of NAR and its ability to restore osteogenesis (P<0.05).
CONCLUSIONS
NAR can enhance the antioxidant capacity of hPDLSCs by activating the FOXO1/β-catenin signaling pathway within hPDLSCs, thereby mitigating oxidative stress damage and alleviating the loss of osteogenic capacity.
Humans
;
Oxidative Stress/drug effects*
;
Periodontal Ligament/cytology*
;
Hydrogen Peroxide
;
Forkhead Box Protein O1/metabolism*
;
Stem Cells/cytology*
;
Flavanones/pharmacology*
;
beta Catenin/metabolism*
;
Osteogenesis/drug effects*
;
Signal Transduction
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Alkaline Phosphatase/metabolism*
;
Osteocalcin/metabolism*
;
Cells, Cultured
;
Cell Differentiation/drug effects*
6.Preparation of polycaprolactone-polyethylene glycol-concentrated growth factor composite scaffolds and the effects on the biological properties of human periodontal ligament stem cells.
Li GAO ; Mingyue ZHAO ; Shun YANG ; Runan WANG ; Jiajia CHENG ; Guangsheng CHEN
West China Journal of Stomatology 2025;43(6):819-828
OBJECTIVES:
This study investigated the effects of a polycaprolactone (PCL)-polyethylene glycol (PEG) scaffold incorporated with concentrated growth factor (CGF) on the adhesion, proliferation, and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs).
METHODS:
The PCL-PEG-CGF composite scaffold was fabricated using an immersion and freeze-drying technique. Its microstructure, mechanical properties, and biocompatibility were systematically characterized. The hPDLSCs were isolated through enzymatic digestion, and the hPDLSCs were identified through flow cytometry. Third-passage hPDLSCs were seeded onto the composite scaffolds, and their adhesion, proliferation and osteogenic differentiation were assessed using CCK-8 assays, 4',6-diamidino-2-phenylindole (DAPI) staining, alkaline phosphatase (ALP) staining, alizarin red staining, and Western blot analysis of osteogenesis-related proteins [Runt-related transcription factor 2 (Runx2), ALP, and morphogenetic protein 2 (BMP2)].
RESULTS:
Scanning electron microscopy revealed that the PCL-PEG-CGF composite scaffold exhibited a honeycomb-like structure with heterogeneous pore sizes. The composite scaffold exhibited excellent hydrophilicity, as evidenced by a contact angle (θ) approaching 0° within 6 s. Its elastic modulus was measured at (4.590 0±0.149 3) MPa, with comparable hydrophilicity, fracture tensile strength, and fracture elongation to PCL-PEG scaffold. The hPDLSCs exhibited significantly improved adhesion to the PCL-PEG-CGF composite scaffold compared with the PCL-PEG scaffold (P<0.01). Additionally, cell proliferation was markedly improved in all the experimental groups on days 3, 5, and 7 (P<0.01), and statistically significant differences were found between the PCL-PEG-CGF group and other groups (P<0.01). The PCL-PEG-CGF group showed significantly elevated ALP activity (P<0.05), increased mineralization nodule formation, and upregulated expression of osteogenic-related proteins (Runx2, BMP2 and ALP; P<0.05).
CONCLUSIONS
The PCL-PEG-CGF composite scaffold exhibited excellent mechanical properties and biocompatibility, enhancing the adhesion and proliferation of hPDLSCs and promoting their osteogenic differentiation by upregulating osteogenic-related proteins.
Humans
;
Polyesters/chemistry*
;
Periodontal Ligament/cytology*
;
Polyethylene Glycols/chemistry*
;
Stem Cells/cytology*
;
Tissue Scaffolds
;
Cell Proliferation
;
Osteogenesis
;
Cell Differentiation
;
Cell Adhesion
;
Bone Morphogenetic Protein 2/metabolism*
;
Cells, Cultured
;
Alkaline Phosphatase/metabolism*
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Intercellular Signaling Peptides and Proteins/pharmacology*
;
Tissue Engineering/methods*
7.Long non-coding RNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 regulates the proliferation and osteogenic differentiation of human periodontal ligament stem cells by targeting miR-24-3p.
Ming PANG ; Hong-Xia WEI ; Xi CHEN
West China Journal of Stomatology 2021;39(5):547-554
OBJECTIVES:
This study aims to explore the effect and molecular mechanism of long non-coding RNA (lncRNA) potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1) on proliferation and osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs).
METHODS:
The hPDLSCs of normal periodontal tissues were isolated and cultured. The mineralized solution induced the osteoblast differentiation of hPDLSCs. The down-regulation of lncRNA KCNQ1OT1, the overexpression of anti-miR-24-3p on the proliferation and the levels of osteocalcin (OCN), osteopontin (OPN) and alkaline phosphatase (ALP) of hPDLSCs were investigated. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the levels of lncRNA KCNQ1OT1, miR-24-3p, OCN, OPN, and ALP. Methyl thiazolyl tetrazolium (MTT) method was used to detect cell viability and activity. Cell proliferation was evaluated by MTT. Western blot was used to detect protein expression. The targeted relationship between lncRNA KCNQ1OT1 and miR-24-3p was detected by double-luciferase experiment.
RESULTS:
The expression level of lncRNA KCNQ1OT1 increased, and that of miR-24-3p decreased during the osteogenesis of hPDLSCs (
CONCLUSIONS
Down-regulation of lncRNA KCNQ1OT1 inhibited the proliferation and osteogenic differentiation of hPDLSCs by targeting the up-regulated expression of miR-24-3p.
Cell Differentiation
;
Cell Proliferation
;
Humans
;
MicroRNAs/genetics*
;
Osteogenesis
;
Periodontal Ligament/cytology*
;
Potassium
;
Potassium Channels, Voltage-Gated
;
RNA, Long Noncoding/genetics*
;
Stem Cells/cytology*
8.Periostin inhibits hypoxia-induced oxidative stress and apoptosis in human periodontal ligament fibroblasts p38 MAPK signaling pathway.
Huili LIU ; Yidan WANG ; Yangli YUE ; Peng ZHANG ; Yali SUN ; Qiaohua CHEN
Journal of Zhejiang University. Medical sciences 2020;40(7):942-948
OBJECTIVE:
To investigate the effect of periostin on hypoxia-induced oxidative stress and apoptosis in human periodontal ligament fibroblasts and the molecular mechanism involved.
METHODS:
cultured human periodontal ligament fibroblasts were placed in an anaerobic gas-producing bag for hypoxia treatment for 48 h followed by treatment with periostin at low (25 ng/mL), moderate (50 ng/mL) or high (100 ng/mL) doses. MTT assay was used to measure the cell viability, and the cell apoptosis rate was determined using flow cytometry. The contents of IL-1β, IL-6 and TNF-α in the cells were determined with ELISA, and ROS levels were measured using a fluorescent plate reader. The intracellular SOD activity was detected using ELISA. The expressions of HIF-1α, P21, cyclin D1, Bax, cleaved caspase-3, Bcl-2, P38MAPK and p-p38 MAPK proteins in the cells were detected with Western blotting.
RESULTS:
Hypoxia treatment significantly reduced the cell viability ( < 0.05), increased P21, Bax, and cleaved caspase-3 protein levels ( < 0.05), promoted cell apoptosis ( < 0.05), and decreased cyclin D1 and Bcl-2 protein levels ( < 0.05) in the cells. Compared with the hypoxic group, the cells treated with periostin at different concentrations showed significantly increased cell viability ( < 0.05) with significantly lowered apoptotic rates ( < 0.05) and decreased expression levels of Bax and cleaved caspase-3 ( < 0.05) but significantly increased expression levels of cyclin D1 and Bcl-2 ( < 0.05). Hypoxic exposure of the cells resulted in significantly increased expression levels of HIF-1α and p-p38 MAPK ( < 0.05) and increased levels of IL-1β, IL-6, TNF-α and ROS ( < 0.05) but decreased SOD activity ( < 0.05). Periostin treatment at different concentrations significantly lowered the expression levels of HIF-1α and p-p38 MAPK ( < 0.05) and the levels of IL-1β, IL-6, TNF-α and ROS ( < 0.05) and significantly increased SOD activity in the hypoxic cells ( < 0.05).
CONCLUSIONS
Periostin promotes the proliferation, inhibits apoptosis, enhances cellular antioxidant capacity, and reduces inflammatory damage in human periodontal ligament fibroblasts exposed to hypoxia possibly by inhibiting the activation of the p38 MAPK signaling pathway.
Apoptosis
;
drug effects
;
Cell Adhesion Molecules
;
administration & dosage
;
Cell Hypoxia
;
Fibroblasts
;
drug effects
;
Humans
;
Oxidative Stress
;
drug effects
;
Periodontal Ligament
;
cytology
;
Signal Transduction
;
drug effects
;
p38 Mitogen-Activated Protein Kinases
9.Effects of Different Inflammatory Factors on Hepatocyte Kinase Receptors and Ligands in Human Periodontal Ligament Fibroblasts.
Xiao Nan XU ; Meng Lin WANG ; Ding ZHANG
Acta Academiae Medicinae Sinicae 2019;41(3):300-306
Objective To investigate the effects of different inflammatory factors on hepatocyte kinase receptor(Eph)and ligand(ephrin)in human periodontal ligament fibroblasts(hPDLFs).Methods hPDLFs were stimulated with either 10 ng/ml tumor necrosis factor-α(TNF-α)or 10 ng/ml interleukin(IL)-1β,and then the expressions of Eph and ephrin at both mRNA and protein levels were determined at 0,1,2,6,12,and 24 hours.Results The levels of Eph receptors and ephrin ligand changed in a time-dependent manner in human periodontal ligament fibroblasts after treatment with TNF-α or IL-1β. The expression of ephrinA2 significantly increased in both groups within 24 hours(all <0.05). In the TNF-α group,the mRNA expression of ephrinA2 significantly increased at 1 h and was significant higher that in the IL-1β group at 24 h(<0.05). EphB4 showed a time-dependent decline after a short period of high expression.Conclusions Both TNF-α and IL-1β can cause changes in the expressions of Eph receptors and ephrin ligands in hPDLFs. The changes induced by both are consistent,although the effect of TNF-α is more pronounced.
Cells, Cultured
;
Ephrins
;
metabolism
;
Fibroblasts
;
Humans
;
Interleukin-1beta
;
pharmacology
;
Ligands
;
Periodontal Ligament
;
cytology
;
Receptors, Eph Family
;
metabolism
;
Tumor Necrosis Factor-alpha
;
pharmacology
10.Transcriptional activation of glucose transporter 1 in orthodontic tooth movement-associated mechanical response.
Yu WANG ; Qian LI ; Fuliang LIU ; Shanshan JIN ; Yimei ZHANG ; Ting ZHANG ; Yunyan ZHU ; Yanheng ZHOU
International Journal of Oral Science 2018;10(3):27-27
The interplay between mechanoresponses and a broad range of fundamental biological processes, such as cell cycle progression, growth and differentiation, has been extensively investigated. However, metabolic regulation in mechanobiology remains largely unexplored. Here, we identified glucose transporter 1 (GLUT1)-the primary glucose transporter in various cells-as a novel mechanosensitive gene in orthodontic tooth movement (OTM). Using an in vivo rat OTM model, we demonstrated the specific induction of Glut1 proteins on the compressive side of a physically strained periodontal ligament. This transcriptional activation could be recapitulated in in vitro cultured human periodontal ligament cells (PDLCs), showing a time- and dose-dependent mechanoresponse. Importantly, application of GLUT1 specific inhibitor WZB117 greatly suppressed the efficiency of orthodontic tooth movement in a mouse OTM model, and this reduction was associated with a decline in osteoclastic activities. A mechanistic study suggested that GLUT1 inhibition affected the receptor activator for nuclear factor-κ B Ligand (RANKL)/osteoprotegerin (OPG) system by impairing compressive force-mediated RANKL upregulation. Consistently, pretreatment of PDLCs with WZB117 severely impeded the osteoclastic differentiation of co-cultured RAW264.7 cells. Further biochemical analysis indicated mutual regulation between GLUT1 and the MEK/ERK cascade to relay potential communication between glucose uptake and mechanical stress response. Together, these cross-species experiments revealed the transcriptional activation of GLUT1 as a novel and conserved linkage between metabolism and bone remodelling.
Animals
;
Biomechanical Phenomena
;
Blotting, Western
;
Bone Remodeling
;
drug effects
;
Cells, Cultured
;
Glucose Transporter Type 1
;
antagonists & inhibitors
;
genetics
;
Humans
;
Hydroxybenzoates
;
pharmacology
;
Immunohistochemistry
;
MAP Kinase Signaling System
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Osteoprotegerin
;
metabolism
;
Periodontal Ligament
;
cytology
;
RANK Ligand
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tooth Movement Techniques
;
Transcriptional Activation

Result Analysis
Print
Save
E-mail