1.Protective Effect of Xuebijing on Lung Injury in Rats with Severe Acute Pancreatitis by Blocking FPRs/NLRP3 Inflammatory Pathway
Guixian ZHANG ; Dawei LIU ; Xia LI ; Xijing LI ; Pengcheng SHI ; Zhiqiao FENG ; Jun CAI ; Wenhui ZONG ; Xiumei ZHAO ; Hongbin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):113-120
ObjectiveTo explore the therapeutic effect of Xuebijing injection (XBJ) on severe acute pancreatitis induced acute lung injury (SAP-ALI) by regulating formyl peptide receptors (FPRs)/nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammatory pathway. MethodsSixty rats were randomly divided into a sham group, a SAP-ALI model group, low-, medium-, and high-dose XBJ groups (4, 8, and 12 mL·kg-1), and a positive drug (BOC2, 0.2 mg·kg-1) group. For the sham group, the pancreas of rats was only gently flipped after laparotomy, and then the abdomen was closed, while for the remaining five groups, SAP-ALI rat models were established by retrograde injection of 5% sodium taurocholate (Na-Tc) via the biliopancreatic duct. XBJ and BOC2 were administered via intraperitoneal injection once daily for 3 d prior to modeling and 0.5 h after modeling. Blood was collected from the abdominal aorta 6 h after the completion of modeling, and the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in plasma was measured by enzyme-linked immunosorbent assay (ELISA). The amount of ascites was measured, and the dry-wet weight ratios of pancreatic and lung tissue were determined. Pancreatic and lung tissue was taken for hematoxylin-eosin (HE) staining to observe pathological changes and then scored. The protein expression levels of FPR1, FPR2, and NLRP3 in lung tissue were detected by the immunohistochemical method. Western blot was used to detect the expression of FPR1, FPR2, and NLRP3 in lung tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of FPR1, FPR2, and NLRP3 in lung tissue. ResultsCompared with the sham group, the SAP-ALI model group showed significantly decreased dry-wet weight ratio of lung tissue (P<0.01), serious pathological changes of lung tissue, a significantly increased pathological score (P<0.01), and significantly increased protein and mRNA expression levels of FPR1, FPR2, and NLRP3 in lung tissue (P<0.01). After BOC2 intervention, the above detection indicators were significantly reversed (P<0.01). After treatment with XBJ, the groups of different XBJ doses achieved results consistent with BOC2 intervention. ConclusionXBJ can effectively improve the inflammatory response of the lungs in SAP-ALI rats and reduce damage. The mechanism may be related to inhibiting the expression of FPRs and NLRP3 in lung tissue, which thereby reduces IL-1β and simultaneously antagonize the release of inflammatory factors IL-6 and TNF-α.
2.Pharmacoeconomic evaluation of finerenone combined with standard treatment regimen in the treatment of diabetic nephropathy
Hai LIANG ; Runan XIA ; Panpan DI ; Mengmeng ZHAO ; Pengcheng ZHANG ; Yashen HOU ; Hong ZHANG ; Wei WU ; Miao YANG
China Pharmacy 2025;36(1):86-90
OBJECTIVE To evaluate the cost-effectiveness of finerenone combined with standard treatment regimen in the treatment of diabetic nephropathy (DN). METHODS From the perspective of healthcare service providers, a Markov model was established to simulate the dynamic changes of each stage in DN patients who received finerenone combined with the standard treatment regimen or the standard treatment regimen alone based on the phase Ⅲ clinical trial study of finerenone for DN. Markov model was used to perform the cost-effectiveness of long-term effects and the costs of the two therapies with a simulation cycle of 4 months, a simulation period of 15 years and an annual discount rate of 5%. At the same time, one-way sensitivity analysis and probability sensitivity analysis were performed, and the stability of the results was validated. RESULTS Accumulative cost of the standard treatment regimen was 579 329.54 yuan, and the accumulative utility was 8.052 4 quality-adjusted life year (QALYs); the accumulative cost of finerenone combined with the standard treatment regimen was 332 520.61 yuan, and the accumulative utility was 8.187 4 QALYs. Finerenone combined with the standard treatment regimen was more cost-effective. The results of one-way sensitivity analysis showed that dialysis status utility value, DN stage 3 utility value and DN stage 4 utility value had a great influence on the incremental cost-effectiveness ratio, but did not affect the robustness of the model. The results of probability sensitivity analysis showed that finerenone combined with the standard treatment regimen was more cost-effective with 100% probability. CONCLUSIONS For DN patients, finerenone combined with the standard treatment regimen is more cost-effective as an absolute advantage option.
3.Identification strategy of cold and hot properties of Chinese herbal medicines based on artificial intelligence and biological experiments.
Lin LIN ; Pengcheng ZHAO ; Zhao CHEN ; Bin LIU ; Yuexi WANG ; Qi GENG ; Li LI ; Yong TAN ; Xiaojuan HE ; Li LI ; Jianyu SHI ; Cheng LU
Chinese Medical Journal 2025;138(6):745-747
4.Liquiritin improves macrophage degradation of engulfed tumour cells by promoting the formation of phagolysosomes via NOX2/gp91phox.
Caiyi YANG ; Kehan CHEN ; Yunliang CHEN ; Xuting XIE ; Pengcheng LI ; Meng ZHAO ; Junjie LIANG ; Xueqian XIE ; Xiaoyun CHEN ; Yanping CAI ; Bo XU ; Qing WANG ; Lian ZHOU ; Xia LUO
Journal of Pharmaceutical Analysis 2025;15(5):101093-101093
The incomplete degradation of tumour cells by macrophages (Mϕ) is a contributing factor to tumour progression and metastasis, and the degradation function of Mϕ is mediated through phagosomes and lysosomes. In our preliminary experiments, we found that overactivation of NADPH oxidase 2 (NOX2) reduced the ability of Mϕ to degrade engulfed tumour cells. Above this, we screened out liquiritin from Glycyrrhiza uralensis Fisch, which can significantly inhibit NOX2 activity and inhibit tumours, to elucidate that suppressing NOX2 can enhance the ability of Mϕ to degrade tumour cells. We found that the tumour environment could activate the NOX2 activity in Mϕ phagosomes, causing Mϕ to produce excessive reactive oxygen species (ROS), thus prohibiting the formation of phagolysosomes before degradation. Conversely, inhibiting NOX2 in Mϕ by liquiritin can reduce ROS and promote phagosome-lysosome fusion, therefore improving the enzymatic degradation of tumour cells after phagocytosis, and subsequently promote T cell activity by presenting antigens. We further confirmed that liquiritin down-regulated the expression of the NOX2 specific membrane component protein gp91 phox, blocking its binding to the NOX2 cytoplasmic component proteins p67 phox and p47 phox, thereby inhibiting the activity of NOX2. This study elucidates the specific mechanism by which Mϕ cannot degrade tumour cells after phagocytosis, and indicates that liquiritin can promote the ability of Mϕ to degrade tumour cells by suppressing NOX2.
5.Research progress of neurotransmitters in lung injury after traumatic brain injury.
Le CAO ; Haikun ZHANG ; Jinxiang YU ; Pengcheng MA ; Lifeng JIA ; Tao ZHAO
Chinese Critical Care Medicine 2025;37(10):982-988
Traumatic brain injury (TBI), as a significant central nervous system damage disease with high frequency in the world, leads to a huge number of patients with impaired health and lower quality of life every year. Lung injury is a common and dangerous consequence, which dramatically raises the mortality of patients. Discovering the pathophysiology of lung injury after TBI and discovering viable therapeutic targets has become an important need for clinical diagnosis and therapy. Neurotransmitters, as the fundamental chemical agents of the nervous system for signal transmission, not only govern neuronal activity and apoptosis in TBI but also significantly influence the pathophysiological mechanisms of lung injury subsequent to TBI. The imbalance is intricately linked to the onset and progression of lung damage. This paper systematically reviews the clinical characteristics and predominant pathogenesis of lung injury following TBI, emphasizing the role of key neurotransmitters, including glutamate (Glu), γ-aminobutyric acid (GABA), norepinephrine (NE), dopamine (DA), and acetylcholine (ACh), in lung injury post-TBI. It examines their influence on inflammatory response, vascular permeability, and pulmonary circulation function. Additionally, the paper evaluates the research advancements and potential applications of targeted therapeutic strategies for various neurotransmitter systems, such as receptor antagonists, transporter inhibitors, and neurotransmitter analogues. This research aims to offer a theoretical framework for clarifying the neural regulatory mechanisms of lung injury following TBI and to establish a basis for the development of novel therapeutic strategies and enhancement of the prognosis of the patients.
Humans
;
Brain Injuries, Traumatic/metabolism*
;
Neurotransmitter Agents/metabolism*
;
Lung Injury/metabolism*
;
gamma-Aminobutyric Acid/metabolism*
;
Glutamic Acid/metabolism*
;
Norepinephrine/metabolism*
;
Dopamine/metabolism*
;
Acetylcholine/metabolism*
6.Multi-omics analysis of hormesis effect of lanthanum chloride on carotenoid synthesis in Rhodotorula mucilaginosa.
Hong ZHANG ; Tong WEN ; Zhihong WANG ; Xin ZHAO ; Hao WU ; Pengcheng XIANG ; Yong MA
Chinese Journal of Biotechnology 2025;41(4):1631-1648
Hormesis effect has been observed in the secondary metabolite synthesis of microorganisms induced by rare earth elements. However, the underlying molecular mechanism remains unclear. To analyze the molecular mechanism of the regulatory effect of Rhodotorula mucilaginosa in the presence of lanthanum chloride, different concentrations of lanthanum chloride were added to the fermentation medium of Rhodotorula mucilaginosa, and the carotenoid content was subsequently measured. It was found that the concentrations of La3+ exerting the promotional and inhibitory effects were 0-100 mg/L and 100-400 mg/L, respectively. Furthermore, the expression of 33 genes and the synthesis of 55 metabolites were observed to be up-regulated, while the expression of 85 genes and the synthesis of 123 metabolites were found to be down-regulated at the concentration range of the promotional effect. Notably, the expression of carotenoid synthesis-related genes except AL1 was up-regulated. Additionally, the content of β-carotene, lycopene, and astaxanthin demonstrated increases of 10.74%, 5.02%, and 3.22%, respectively. The expression of 5 genes and the synthesis of 91 metabolites were up-regulated, while the expression of 35 genes and the synthesis of 138 metabolites were down-regulated at the concentration range of the inhibitory effect. Meanwhile, the content of β-carotene, lycopene, and astaxanthin decreased by 21.73%, 34.81%, and 35.51%, respectively. In summary, appropriate concentrations of rare earth ions can regulate the synthesis of secondary metabolites by modulating the activities of various enzymes involved in metabolic pathways, thereby exerting the hormesis effect. The findings of this study not only contribute to our comprehension for the mechanism of rare earth elements in organisms but also offer a promising avenue for the utilization of rare earth elements in diverse fields, including agriculture, pharmaceuticals, and healthcare.
Lanthanum/pharmacology*
;
Rhodotorula/genetics*
;
Carotenoids/metabolism*
;
Hormesis/drug effects*
;
Fermentation
;
Multiomics
7.3D printing precise positioning guided ulnar groove plasty for treatment of cubital tunnel syndrome
Hanqing DONG ; Xing WU ; Pengcheng XU ; Qingwen WANG ; Zhisheng ZHANG ; Jianyong ZHAO
Chinese Journal of Tissue Engineering Research 2024;28(18):2825-2829
BACKGROUND:With the increase of patients with cubital tunnel syndrome,ulnar groove plasty does not affect the normal anatomical structure and distribution of the ulnar nerve,which is one of the main surgical procedures for the treatment of cubital tunnel syndrome.3D printing combined with ulnar groove plasty can more accurately position the expansion depth and width of the ulnar groove to avoid some surgical complications. OBJECTIVE:To investigate the effect of 3D printing technology combined with ulnar groove plasty on nerve electrophysiology and prognosis in patients with cubital tunnel syndrome. METHODS:A total of 70 patients with moderate and severe cubital tunnel syndrome who were treated in Cangzhou Integrated Traditional Chinese and Western Medicine Hospital from March 2020 to March 2022 were selected as the study subjects.They were divided into two groups,with 35 cases in each group.The control group underwent traditional ulnar groove plasty.The observation group underwent 3D printing technology combined with ulnar groove plasty.The patients were followed up for 3 months.The clinical efficacy,latency,amplitude of compound muscle action potential of abductor pollicis brevis of the affected limb and ulnar nerve motor conduction velocity,grip strength on the affected side,pinch strength of the middle and thumb fingers,S-W monofilament of the little finger,two-point discrimination of the little finger,and Disabilities of the Arm,Shoulder and Hand Questionnaire score were compared between the two groups. RESULTS AND CONCLUSION:(1)Compared with the control group(74%),the excellent and good rate was significantly higher in the observation group(91%)(P<0.05).(2)Compared with pre-treatment,the latency of compound muscle action potential of abductor pollicis brevis of affected limb was significantly shorter and the wave amplitude and ulnar nerve motor conduction velocity were significantly higher in the two groups after treatment.The latency was significantly shorter and the wave amplitude and ulnar nerve motor conduction velocity were significantly higher in the observation group than those in the control group(P<0.05).(3)Compared with pre-treatment,the grip strength,middle finger and thumb pinch strength of the affected side,S-W monofilament of the little finger and two-point discrimination of the little finger were significantly decreased in the two groups after treatment.The grip strength,middle finger and thumb pinch strength on the affected side were greater,S-W monofilament of the little finger and two-point discrimination of the little finger were significantly smaller in the observation group than those in the control group(P<0.05).(4)Compared with pre-treatment,the Disabilities of the Arm,Shoulder and Hand Questionnaire scores of the two groups were significantly reduced after treatment,and the Disabilities of the Arm,Shoulder and Hand Questionnaire scores of the observation group were significantly lower than those of the control group(P<0.05).(5)It is concluded that 3D printing technology combined with ulnar groove plasty in the treatment of cubital tunnel syndrome can effectively improve its clinical efficacy,promote the neurophysiological recovery of patients,and enhance the function of fingers and upper limbs,which has high clinical application value.
8.Exosomes derived from miR-133a-3p engineered mesenchymal stem cells promote myocardial repair in rats after acute myocardial infarction
Ling SUN ; Wenwu ZHU ; Jian ZHANG ; Pengcheng ZHAO ; Yeqian ZHU ; Fengxiang ZHANG
Chinese Journal of Cardiology 2024;52(1):72-78
Objective:To investigate the effects of exosome derived from miR-133a-3p engineered human umbilical cord blood mesenchymal stem cells (ucMSC) on myocardial repair after acute myocardial infarction (AMI) in rats.Methods:UcMSC was amplified and cultured in vitro. Lentiviral carrying miR-133a-3p and negative control vectors were transfected into ucMSC. Exosomes secreted by the transfected ucMSC were named miR-133a-3p-Exo and miR-NC-Exo, respectively. The AMI model of rats was established by ligation of the left anterior descending coronary artery. MiR-133a-3p-Exo or miR-NC-Exo were then injected into the border zone of the infarct area. Cardiac function was assessed by echocardiography after twenty-eight days of intervention, and Masson staining was used to evaluate the area of myocardial fibrosis post-AMI. The myocardial apoptosis after infarction was evaluated by TUNEL staining and the angiogenesis after infarction was evaluated by immunofluorescence staining in the current study. Results:Compared with the miR-NC-Exo group, the left ventricular ejection fraction in the miR-133a-3p-Exo group was significantly increased ((47.4%±9.8%) vs. (64.2%±8.9%), P<0.05). While the myocardial fibrosis area ((31.2%±7.3%) vs. (18.0%±1.5%), P<0.01) and the percentage of apoptotic cardiomyocytes ((25.6%±3.6%) vs. (15.1%±4.4%), P<0.05) was significantly reduced in the miR-133a-Exo group. Besides, the expression of CD31 and α-smooth muscle actin (α-SMA) were also increased significantly in the miR-133a-3p-Exo group compared to the miR-NC-Exo group (CD31: (2.9±0.9) vs. (13.9±2.0), P<0.000 1, α-SMA: (3.5±0.9) vs. (11.0±1.6), P<0.000 1). Conclusion:Exosome derived from miR-133a-3p engineered ucMSC effectively inhibited myocardial apoptosis and promoted angiogenesis, thus improving the cardiac function after myocardial infarction in rats.
9.Cost-effectiveness of HCV testing strategies for hepatitis C elimination in general population in China
Pengcheng LIU ; Di XU ; Guowei DING ; Liang ZHAO ; Jiejun YU ; Zhongfu LIU ; Jian LI
Chinese Journal of Epidemiology 2024;45(3):464-472
Objective:To evaluate the cost-effectiveness of hepatitis C screening in general population in China, and find the age group in which hepatitis C screening can achieve the best cost-effectiveness.Methods:A decision-Markov model was constructed by using software TreeAge pro 2019 to simulate the outcomes of hepatitis C disease pregression of 100 000 persons aged 20-59 years. The cost-effectiveness of the strategies were evaluated from societal perspectives by using incremental cost-effectiveness ratio (ICER) and net monetary benefit (NMB). One-way sensitivity analysis and probability sensitivity analysis were used to evaluate the uncertainty of parameters and model.Results:Hepatitis C screening was cost-effective in people aged 20- 59 years and the cost effectiveness was best in age group 40-49 years. Compared with non-screening strategy of hepatitis C in people aged 20-59 years, the incremental cost was 161.24 yuan, the incremental utility was 0.003 6 quality adjusted life years (QALYs)/per person, ICER was 45 197.26 yuan/QALY, ICER was less than the willing payment threshold. The ICER and NMB in all age groups were 42 055.06-53 249.43 yuan/QALY and 96.52-169.86 yuan/per person. Hepatitis C screening in people aged 40-49 years had the best cost-effectiveness. The results of one-way sensitivity analysis showed that the discount rate, anti-HCV detection cost, anti-HCV infection rate and the cost of direct antiviral agents were the main factors influencing economic evaluation. The results of the probability sensitivity analysis indicated that the model analysis was stable.Conclusions:Implementing hepatitis C screening based on medical institutions is cost-effective in people aged 20- 59 years, especially in those aged 40-49 years. Implementing the HCV screening strategy of be willing to test as far as possible in general population can reduce hepatitis C disease burden in China.
10.Metformin suppresses hypoxia-inducible factor-1α expression in cancer-associated fibroblasts to block tumor-stromal cross-talk in breast cancer
Shan SHAO ; Weichao BAI ; Pengcheng ZHOU ; Minna LUO ; Xinhan ZHAO ; Jianjun LEI
Journal of Southern Medical University 2024;44(3):428-436
Objective To investigate the mechanism of metformin for regulating tumor-stromal cell cross-talk in breast cancer.Methods Tumor associated fibroblasts(CAFs)co-cultured with breast cancer cells were treated with metformin,and the changes in expressions of hypoxia-inducible factor-1α(HIF-1α),p-AMPK,stroma-derived factor-1(SDF-1)and interleukin-8(IL-8)in the CAFs were detected using ELISA,RT-qPCR or Western blotting;Transwell assay was used to evaluate the invasiveness of the tumor cells and its changes following treatment with exogenous SDF-1,IL-8 and TGF-β1.The effects of HIF-1α shRNA or overexpression plasmid,AMPK shRNA,and treatment with OG(a proline hydroxylase inhibitor)or 2-OXO(a proline hydroxylase activator)were examined on p-AMPK,HIF-1α,SDF-1 and IL-8 expressions and invasiveness of the CAFs.Results Metformin treatment significantly increased the expression levels of p-AMPK,SDF-1 and IL-8(P<0.05)and decreased HIF-1α expression(P<0.05)without affecting AMPK expression level(P>0.05)in the CAFs.The invasion ability of metformin-treated breast cancer cells was significantly decreased(P<0.05).Exogenous SDF-1 and IL-8,HIF-1α overexpression,and OG-induced upregulation of HIF-1α all significantly attenuated the inhibitory effects of metformin on breast cancer cell invasion(P<0.05)and HIF-1α,SDF-1 and IL-8 expressions in CAFs(P<0.05).Transfection with HIF-1α shRNA or treatment with 2-OXO significantly decreased the invasiveness of breast cancer cells(P<0.05).P-AMPK knockdown significantly suppressed the inhibitory effect of metformin on HIF-1α expression in CAFs and on invasion of breast cancer cells(P<0.05).Treatment with TGF-β1 partially decreased the inhibitory effect of metformin on HIF-1α expression in CAFs and invasiveness of the breast cancer cells(P<0.05).Conclusion Metformin suppresses HIF-1α expression in CAFs to block tumor-stromal cross talk in breast cancer.

Result Analysis
Print
Save
E-mail