1.Ameliorative Effect of Wendantang Combined with Danshenyin and Dushentang on Ischemic Heart Disease with Phlegm-stasis Syndrome in Mice Based on Circulating Monocytes
Fenghe YANG ; Ziqi TIAN ; Zhiqian SONG ; Shitao PENG ; Wenjie LU ; Tao LIN ; Chun WANG ; Zhangchi NING
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):22-32
ObjectiveTo investigate the ameliorative effect of Wendantang combined with Danshenyin and Dushentang (WDD) on mice with ischemic heart disease (IHD) presenting phlegm-stasis syndrome based on the inflammatory phenotype and differentiation of circulating monocytes. MethodsA model of IHD with phlegm-stasis syndrome was established using left anterior descending coronary artery ligation supplemented with a high-fat diet. Eighty model mice were randomly assigned to the model group, WDD low-dose group (WDD-L), WDD medium-dose group (WDD-M), WDD high-dose group (WDD-H), and atorvastatin calcium tablet group, with 16 mice in each group. An additional 16 C57BL/6J mice were designated as the sham-operation group. The WDD groups received intragastric administration at doses of 8.91, 17.81, 35.62 g·kg-1, and the atorvastatin calcium tablet group received the corresponding drug at 1.3 mg·kg-1, twice daily. The sham-operation and model groups were given the same volume of pure water by gavage each day. After 5 consecutive weeks of administration, the cardiac index was calculated. Cardiac function was assessed by echocardiography. Myocardial histopathology was examined by hematoxylin-eosin (HE) staining. Serum N-terminal pro-B-type natriuretic peptide (pro-BNP) content was measured by enzyme-linked immunosorbent assay (ELISA). Hemorheological parameters were analyzed using an automated hemorheology analyzer. Serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were determined using an automated biochemical analyzer. Changes in circulating monocytes were detected by flow cytometry. Mouse bone marrow mononuclear cells were isolated in vitro and divided into blank group, model serum group, WDD-L drug-containing serum group, WDD-M drug-containing serum group, and WDD-H drug-containing serum group. CD36 expression and macrophage differentiation in each group were assessed by flow cytometry. The mechanism by which WDD mediates circulating monocyte differentiation was further explored using CD36 knockdown/overexpression RAW264.7 cell lines. ResultsCompared with the sham-operation group, the model group showed a significantly increased cardiac index (P0.01), significantly decreased fractional shortening (FS) (P0.01), and significantly increased left ventricular end-diastolic internal diameter (LVDD) and left ventricular end-systolic internal diameter (LVDS) (P0.01). Cardiomyocytes exhibited marked deformation and necrosis with inflammatory cell infiltration. Serum pro-BNP levels were significantly elevated (P0.01), and whole-blood viscosity (BV) at high, medium, and low shear rates was significantly increased (P0.01). Compared with the model group, the WDD groups showed significantly reduced cardiac index (P0.05, P0.01), significantly increased FS (P0.05, P0.01), significantly decreased LVDD and LVDS (P0.01), markedly improved cardiomyocyte morphology, significantly reduced inflammatory infiltration, significantly decreased serum pro-BNP levels (P0.01), and significantly decreased BV at high, medium, and low shear rates (P0.01), with the most pronounced improvement observed in the WDD-M group. Compared with the sham-operation group, TC, TG, and LDL levels were significantly increased in the model group (P0.05, P0.01), while HDL levels were significantly decreased (P0.05). After WDD-H treatment, TC, TG, and LDL levels were significantly reduced and HDL levels were significantly increased in mice (P0.05, P0.01). Compared with the sham-operation group, classical monocytes in blood and bone marrow and intermediate monocytes in blood were significantly increased in the model group (P0.01), whereas intermediate monocytes in bone marrow and non-classical monocytes in blood were significantly decreased (P0.01). After WDD administration, all circulating monocyte subsets in blood and bone marrow were significantly alleviated (P0.05, P0.01), with the WDD-M group showing the optimal effect. In vitro, compared with the blank group, CD36 expression on bone marrow monocytes and the proportion of differentiated macrophages were significantly increased in the model serum group (P0.01), and CD36 expression was significantly upregulated on RAW264.7 cells (P0.01). Compared with the model serum group, all drug-containing serum groups exhibited significantly reduced CD36 expression on bone marrow monocytes and significantly reduced macrophage differentiation (P0.01). WDD downregulated CD36 expression in both CD36 knockdown and overexpression RAW264.7 cell lines (P0.05, P0.01), with the strongest regulatory effect observed in the WDD-M drug-containing serum group. ConclusionWDD can significantly improve the manifestations of phlegm-stasis syndrome in IHD mice and reduce the proportion of classical circulating monocytes. Its mechanism may be related to the inhibition of CD36 expression on classical circulating monocytes.
2.Molecular Mechanism of Programmed Cell Death in Chronic Obstructive Pulmonary Disease and Traditional Chinese Medicine Intervention: A Review
Xin PENG ; Yunhui LI ; Lei LIANG ; Zheyu LUAN ; Hanxiao WANG ; Haotian XU ; Ziming DANG ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):304-313
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that poses a significant threat to global health, exhibiting high morbidity, disability and mortality rate, with its prevention and treatment situation becoming increasingly critical. The pathogenesis of COPD is complex, and the underlying cellular and molecular biological mechanisms remain incompletely elucidated. Programmed cell death (PCD) is the process wherein cells actively undergo demise to maintain internal environmental stability in response to certain signals or specific stimuli. Contemporary medical research indicates that the dysregulation of PCD patterns such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis is closely related to the onset and progression of COPD. Clarifying the molecular mechanisms of PCD in COPD may provide novel perspectives for in-depth understanding and prevention of the disease. Traditional Chinese medicine (TCM) is characterized by holistic regulation. In recent years, extensive research has been conducted in the TCM field focusing on modulating apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis for the treatment of COPD, yielding remarkable achievements. Therefore, this study systematically explored the molecular mechanism of PCD in COPD and reviewed the potential mechanisms and intervention status of TCM targeting PCD in COPD, aiming to provide insights and references for the clinical prevention, treatment and in-depth research of COPD.
3.Ameliorative Effect of Wendantang Combined with Danshenyin and Dushentang on Ischemic Heart Disease with Phlegm-stasis Syndrome in Mice Based on Circulating Monocytes
Fenghe YANG ; Ziqi TIAN ; Zhiqian SONG ; Shitao PENG ; Wenjie LU ; Tao LIN ; Chun WANG ; Zhangchi NING
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):22-32
ObjectiveTo investigate the ameliorative effect of Wendantang combined with Danshenyin and Dushentang (WDD) on mice with ischemic heart disease (IHD) presenting phlegm-stasis syndrome based on the inflammatory phenotype and differentiation of circulating monocytes. MethodsA model of IHD with phlegm-stasis syndrome was established using left anterior descending coronary artery ligation supplemented with a high-fat diet. Eighty model mice were randomly assigned to the model group, WDD low-dose group (WDD-L), WDD medium-dose group (WDD-M), WDD high-dose group (WDD-H), and atorvastatin calcium tablet group, with 16 mice in each group. An additional 16 C57BL/6J mice were designated as the sham-operation group. The WDD groups received intragastric administration at doses of 8.91, 17.81, 35.62 g·kg-1, and the atorvastatin calcium tablet group received the corresponding drug at 1.3 mg·kg-1, twice daily. The sham-operation and model groups were given the same volume of pure water by gavage each day. After 5 consecutive weeks of administration, the cardiac index was calculated. Cardiac function was assessed by echocardiography. Myocardial histopathology was examined by hematoxylin-eosin (HE) staining. Serum N-terminal pro-B-type natriuretic peptide (pro-BNP) content was measured by enzyme-linked immunosorbent assay (ELISA). Hemorheological parameters were analyzed using an automated hemorheology analyzer. Serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were determined using an automated biochemical analyzer. Changes in circulating monocytes were detected by flow cytometry. Mouse bone marrow mononuclear cells were isolated in vitro and divided into blank group, model serum group, WDD-L drug-containing serum group, WDD-M drug-containing serum group, and WDD-H drug-containing serum group. CD36 expression and macrophage differentiation in each group were assessed by flow cytometry. The mechanism by which WDD mediates circulating monocyte differentiation was further explored using CD36 knockdown/overexpression RAW264.7 cell lines. ResultsCompared with the sham-operation group, the model group showed a significantly increased cardiac index (P<0.01), significantly decreased fractional shortening (FS) (P<0.01), and significantly increased left ventricular end-diastolic internal diameter (LVDD) and left ventricular end-systolic internal diameter (LVDS) (P<0.01). Cardiomyocytes exhibited marked deformation and necrosis with inflammatory cell infiltration. Serum pro-BNP levels were significantly elevated (P<0.01), and whole-blood viscosity (BV) at high, medium, and low shear rates was significantly increased (P<0.01). Compared with the model group, the WDD groups showed significantly reduced cardiac index (P<0.05, P<0.01), significantly increased FS (P<0.05, P<0.01), significantly decreased LVDD and LVDS (P<0.01), markedly improved cardiomyocyte morphology, significantly reduced inflammatory infiltration, significantly decreased serum pro-BNP levels (P<0.01), and significantly decreased BV at high, medium, and low shear rates (P<0.01), with the most pronounced improvement observed in the WDD-M group. Compared with the sham-operation group, TC, TG, and LDL levels were significantly increased in the model group (P<0.05, P<0.01), while HDL levels were significantly decreased (P<0.05). After WDD-H treatment, TC, TG, and LDL levels were significantly reduced and HDL levels were significantly increased in mice (P<0.05, P<0.01). Compared with the sham-operation group, classical monocytes in blood and bone marrow and intermediate monocytes in blood were significantly increased in the model group (P<0.01), whereas intermediate monocytes in bone marrow and non-classical monocytes in blood were significantly decreased (P<0.01). After WDD administration, all circulating monocyte subsets in blood and bone marrow were significantly alleviated (P<0.05, P<0.01), with the WDD-M group showing the optimal effect. In vitro, compared with the blank group, CD36 expression on bone marrow monocytes and the proportion of differentiated macrophages were significantly increased in the model serum group (P<0.01), and CD36 expression was significantly upregulated on RAW264.7 cells (P<0.01). Compared with the model serum group, all drug-containing serum groups exhibited significantly reduced CD36 expression on bone marrow monocytes and significantly reduced macrophage differentiation (P<0.01). WDD downregulated CD36 expression in both CD36 knockdown and overexpression RAW264.7 cell lines (P<0.05, P<0.01), with the strongest regulatory effect observed in the WDD-M drug-containing serum group. ConclusionWDD can significantly improve the manifestations of phlegm-stasis syndrome in IHD mice and reduce the proportion of classical circulating monocytes. Its mechanism may be related to the inhibition of CD36 expression on classical circulating monocytes.
4.Molecular Mechanism of Programmed Cell Death in Chronic Obstructive Pulmonary Disease and Traditional Chinese Medicine Intervention: A Review
Xin PENG ; Yunhui LI ; Lei LIANG ; Zheyu LUAN ; Hanxiao WANG ; Haotian XU ; Ziming DANG ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):304-313
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that poses a significant threat to global health, exhibiting high morbidity, disability and mortality rate, with its prevention and treatment situation becoming increasingly critical. The pathogenesis of COPD is complex, and the underlying cellular and molecular biological mechanisms remain incompletely elucidated. Programmed cell death (PCD) is the process wherein cells actively undergo demise to maintain internal environmental stability in response to certain signals or specific stimuli. Contemporary medical research indicates that the dysregulation of PCD patterns such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis is closely related to the onset and progression of COPD. Clarifying the molecular mechanisms of PCD in COPD may provide novel perspectives for in-depth understanding and prevention of the disease. Traditional Chinese medicine (TCM) is characterized by holistic regulation. In recent years, extensive research has been conducted in the TCM field focusing on modulating apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis for the treatment of COPD, yielding remarkable achievements. Therefore, this study systematically explored the molecular mechanism of PCD in COPD and reviewed the potential mechanisms and intervention status of TCM targeting PCD in COPD, aiming to provide insights and references for the clinical prevention, treatment and in-depth research of COPD.
5.Pathogenic Mechanisms of Spleen Deficiency-Phlegm Dampness in Obesity and Traditional Chinese Medicine Prevention and Treatment Strategies:from the Perspective of Immune Inflammation
Yumei LI ; Peng XU ; Xiaowan WANG ; Shudong CHEN ; Le YANG ; Lihua HUANG ; Chuang LI ; Qinchi HE ; Xiangxi ZENG ; Juanjuan WANG ; Wei MAO ; Ruimin TIAN
Journal of Traditional Chinese Medicine 2026;67(1):31-37
Based on spleen deficiency-phlegm dampness as the core pathogenesis of obesity, and integrating recent advances in modern medicine regarding the key role of immune inflammation in obesity, this paper proposes a multidimensional pathogenic network of "obesity-spleen deficiency-phlegm dampness-immune imbalance". Various traditional Chinese medicine (TCM) herbs that strengthen the spleen, regulate qi, and resolve phlegm and dampness can treat obesity by improving spleen-stomach transport and transformation, promoting water-damp metabolism, and regulating immune homeostasis. This highlights immune inflammation as an important entry point to elucidate the TCM concepts of "spleen deficiency-phlegm dampness" and the therapeutic principle of "strengthening the spleen and eliminating dampness to treat obesity". By systematically analyzing the intrinsic connection between "spleen deficiency generating dampness, internal accumulation of phlegm dampness" and immune dysregulation in obesity, this paper aims to provide theoretical support for TCM treatment of obesity based on dampness.
6.Effect of Qingfei Shenshi Decoction (清肺渗湿汤) Combined with Western Medicine on Clinical Effectiveness and Immune Function for Patients with Bronchial Asthma of Heat Wheezing Syndrome
Ying SUN ; Haibo HU ; Na LIU ; Fengchan WANG ; Jinbao ZONG ; Ping HAN ; Peng LI ; Guojing ZHAO ; Haoran WANG ; Xuechao LU
Journal of Traditional Chinese Medicine 2026;67(1):38-44
ObjectiveTo observe the clinical effectiveness and safety of Qingfei Shenshi Decoction (清肺渗湿汤) combined with western medicine for patients with bronchial asthma of heat wheezing syndrome, and to explore its potential mechanism of action. MethodsEighty-six participants with bronchial asthma of heat wheezing syndrome were randomly divided into treatment group and control group, each group with 43 participants. The control group received conventional western medicine, and the treatment group was additionally administered Qingfei Shenshi Decoction orally on the basis of the control group, 1 dose per day. Both groups were treated for 14 days. The primary outcome measure was clinical effectiveness; secondary outcome measures included traditional Chinese medicine (TCM) syndrome score, asthma control test (ACT) score, pulmonary function indices such as forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF), serum inflammatory factor levels including interleukin-4 (IL-4), tumour necrosis factor-α (TNF-α), and high-sensitivity C-reactive protein (hs-CRP), and immune function indices including CD3+, CD4+, CD8+, CD4+/CD8+. All outcome measures were evaluated before and after treatment. Vital signs were monitored, and electrocardiography, blood routine, urine routine, liver function, and renal function tests were performed before and after treatment. Adverse events and reactions during the study were recorded. ResultsA total of 80 patients completed the trial with 40 in each group. The total clinical effective rate of the treatment group was 97.5% (39/40), which was significantly higher than that of the control group (85.0%, 34/40, P<0.05). After treatment, both groups showed decreased TCM syndrome scores, IL-4, TNF-α, hs-CRP, and CD8+ levels, as well as increased ACT scores, CD3+, CD4+, CD4+/CD8+, FEV1, FVC, and PEF levels (P<0.05 or P<0.01). Moreover, the improvements in these indices were more significant in the treatment group than in the control group (P<0.05 or P<0.01). No significant abnormalities in safety indicators were observed in either group, and no adverse events or reactions occurred. ConclusionQingfei Shenshi Decoction combined with conventional western medicine for patients with bronchial asthma of heat wheezing syndrome can effectively improve the clinical symptoms, pulmonary function, and clinical effectiveness, with good safety. Its mechanism may be related to reducing inflammatory factor levels and regulating T lymphocyte subsets to improve immune function.
7.Study on the protective effect of saikosaponin C on acute liver injury in mice based on metabolomics
Xincun LI ; Donghui PENG ; Yongfu WANG ; Yamin SHI ; Mengjuan WU ; Zhihui FU ; Juan WANG
China Pharmacy 2025;36(5):552-557
OBJECTIVE To investigate the protective effect and mechanism of saikosaponin C (SSC) on acute liver injury (ALI) in mice induced by carbon tetrachloride (CCl4) based on serum metabolomics. METHODS Forty mice were divided into blank group (water), model group (water), positive control drug group (Biphenyl diester drop pills, 150 mg/kg), and SSC low- and high-dose groups (2.5, 10 mg/kg) using the random number table method, with 8 mice in each group. They were given water/ relevant drugs, once a day, for 7 consecutive days. One hour after the last administration, all mice were intraperitoneally injected with 0.2% CCl4 olive oil to induce ALI model, except for the blank group. After 17 hours of the modeling, the liver index of mice was calculated. The levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β in serum of mice were detected. The histopathological changes of liver tissue were observed. Meanwhile, the serum metabolomics of mice were analyzed by liquid chromatography-mass spectrometry. RESULTS Compared with the blank group, the levels of liver index, ALT, AST, LDH, TNF-α, IL-6, and IL-1β in the model group were significantly increased (P<0.01). Hepatocytes were edema, vacuolar degeneration, more necrosis, and a large number of inflammatory cells were infiltrated. Compared with the model group, liver index and serum index levels of mice were significantly decreased (P<0.05 or P<0.01), accompanied by marked improvement in histopathological damage to the liver tissue. The metabolomics results showed that compared with the model group, there were 63 up-regulated and 256 down-regulated differential metabolites in the serum of mice in the SSC high-dose group, including prostaglandin B2, 20-hydroxy-leukotriene B4, 5- hydroxy-L-tryptophan, 7α -hydroxycholesterol, etc.; these metabolites were primarily involved in metabolic pathways such as arachidonic acid metabolism, 5-hydroxytryptamine synapse, primary bile acid biosynthesis. CONCLUSIONS SSC exerts a protective effect against CCl4-induced ALI by down-regulating the level of key metabolites such as prostaglandin B2 and 20-hydroxy-leukotriene B4, and then ruducing metabolic pathways such as arachidonic acid metabolism, 5- hydroxytryptamine synapse, and primary bile acid biosynthesis.
8.Construction and Application Evaluation of an Integrated Traditional Chinese and Western Medicine Risk Prediction Model for Readmission in Patients with Stable Angina of Coronary Heart Disease:A Prospective Study Based on Real-World Clinical Data
Wenjie HAN ; Mingjun ZHU ; Xinlu WANG ; Rui YU ; Guangcao PENG ; Qifei ZHAO ; Jianru WANG ; Shanshan NIE ; Yongxia WANG ; Jingjing WEI
Journal of Traditional Chinese Medicine 2025;66(6):604-611
ObjectiveBy exploring the influencing factors of readmission in patients with stable angina of coronary heart disease (CHD) based on real-world clinical data, to establish a risk prediction model of integrated traditional Chinese and western medicine, in order to provide a basis for early identification of high-risk populations and reducing readmission rates. MethodsA prospective clinical study was conducted involving patients with stable angina pectoris of CHD, who were divided into a training set and a validation set at a 7∶3 ratio. General information, traditional Chinese medicine (TCM)-related data, and laboratory test results were uniformly collected. After a one-year follow-up, patients were classified into a readmission group and a non-readmission group based on whether they were readmitted. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors for readmission. A risk prediction model of integrated traditional Chinese and western medicine was constructed and visualized using a nomogram. The model was validated and evaluated in terms of discrimination, calibration, and clinical decision curve analysis. ResultsA total of 682 patients were included, with 477 in the training set and 205 in the validation set, among whom 89 patients were readmitted. Multivariate logistic regression analysis identified heart failure history [OR = 6.93, 95% CI (1.58, 30.45)], wiry pulse [OR = 2.58, 95% CI (1.42, 4.72)], weak pulse [OR = 3.97, 95% CI (2.06, 7.67)], teeth-marked tongue [OR = 4.38, 95% CI (2.32, 8.27)], blood stasis constitution [OR = 2.17, 95% CI (1.06, 4.44)], phlegm-stasis mutual syndrome [OR = 3.64, 95% CI (1.87, 7.09)], and elevated non-high-density lipoprotein cholesterol [OR = 1.30, 95% CI (1.01, 1.69)] as influencing factors of readmission. These factors were used as predictors to construct a nomogram-based risk prediction model for readmission in patients with stable angina. The model demonstrated moderate predictive capability, with an area under the receiver operating characteristic curve (AUC) of 0.818 [95% CI (0.781, 0.852)] in the training set and 0.816 [95% CI (0.779, 0.850)] in the validation set. The Hosmer-Lemeshow test showed good calibration (χ² = 4.55, P = 0.80), and the model's predictive ability was stable. When the threshold probability exceeded 5%, the clinical net benefit of using the model to predict readmission risk was significantly higher than intervening in all patients. ConclusionHistory of heart failure, teeth-marked tongue, weak pulse, wiry pulse, phlegm-stasis mutual syndrome, blood stasis constitution, and non-high-density lipoprotein cholesterol are influencing factors for readmission in patients with stable angina of CHD. A clinical prediction model was developed based on these factors, which showed good discrimination, calibration, and clinical utility, providing a scientific basis for predicting readmission events in patients with stable angina.
9.Changes in glucose metabolism and intestinal flora in patients with type 2 diabetes mellitus after high-intensity intermittent exercise
Hanglin YU ; Haodong TIAN ; Shiyuan WEN ; Li HUANG ; Haowei LIU ; Hansen LI ; Peisong WANG ; Li PENG
Chinese Journal of Tissue Engineering Research 2025;29(2):286-293
BACKGROUND:Exercise has a regulatory effect on intestinal flora and glucose metabolism,but the effects of high-intensity intermittent exercise on intestinal flora and glucose metabolism in patients with type 2 diabetes mellitus are unclear. OBJECTIVE:To investigate the effects of high-intensity intermittent exercise on glucose metabolism and intestinal flora in patients with type 2 diabetes mellitus. METHODS:Eleven patients with type 2 diabetes mellitus were recruited,among which,two were lost to the follow-up and nine were finally enrolled.High-intensity intermittent exercise intervention was conducted 3 times per week for 6 continuous weeks.Fasting blood and fecal samples were collected before and after the intervention.Glucose metabolism indexes were detected in the blood samples,and intestinal flora was detected in the fecal samples.Changes in glucose metabolism indexes and intestinal flora indexes of the patients with type 2 diabetes mellitus before and after the intervention were compared. RESULTS AND CONCLUSION:After 6 weeks of high-intensity intermittent exercise intervention,fasting blood glucose and glycosylated serum protein levels in patients were significantly reduced(P<0.05),and fasting insulin,although not significantly changed,was decreased compared with before intervention.Alpha diversity analysis showed that the diversity(Shannon index),richness(Chao index)and coverage(Coverage index)did not change significantly.Venn diagrams showed that the relative abundance of Bacteroidetes,Actinobacteria,Proteobacteria,and Fusobacteria in the intestinal flora of the patients increased,and the relative abundance of Firmicutes decreased,and a significant decrease was seen in Ruminococcus_torques and Ruminococcus_gnavus in the Firmicutes,which were both positively correlated with the abnormalities of the glycemic metabolism-related indicators,as well as with other disease development.All these findings indicate that high-intensity intermittent exercise intervention has an improvement effect on the glycemic metabolism-related indexes of patients with type 2 diabetes mellitus,and the abundance of beneficial flora in the intestinal tract increases,and the abundance of harmful flora decreased,enhancing the stability of the intestinal flora in patients.
10.Epidural fibrous scar formation in rabbits following autologous ligamentum flavum intervention
Debao ZHANG ; Peng WANG ; Kun LI ; Shaojie ZHANG ; Zhijun LI ; Shuwen LI ; Yimin WU
Chinese Journal of Tissue Engineering Research 2025;29(6):1168-1175
BACKGROUND:It has been proved clinically that adhesion of fibrous scar with the dura mater or nerve root after lumbar operation is an important factor for postoperative symptoms,such as postoperative pain and numbness. OBJECTIVE:To verify the inhibitory effect of autologous ligamentum flavum on the formation of epidural fibrous scar after lumbar surgery and explore the possible molecular biological mechanism. METHODS:Forty-eight Japanese white rabbits(6-8 months old)were randomly divided into three groups:a ligamentum flavum preservation group,a ligamentum flavum non-preservation group,and an autologous fat reposition group.A lumbar laminectomy model was established in all the three groups of rabbits,and rabbit epidural tissues were collected at 3 and 6 weeks after modeling.Hematoxylin-eosin staining was used to observe histological changes and the number and density of fibroblasts,VG staining was used to observe the percentage of collagen fiber area,and immunohistochemistry was used to observe the expression of transforming growth factor β1 and Smad3 proteins. RESULTS AND CONCLUSION:Hematoxylin-eosin staining results revealed that fibroblasts in the ligamentum flavum preservation group were few and loosely arranged,while the cells in the ligamentum flavum non-preservation and autologous fat reposition groups were more numerous and closely arranged.The number density of fibroblasts in the ligamentum flavum preservation group was lower than that in the ligamentum flavum non-preservation and autologous fat reposition groups at 3 and 6 weeks after surgery(P<0.05);however,there was no significant difference between the latter two groups.VG staining results showed that the collagen fibers in the ligamentum flavum preservation group were sparse and distributed unevenly,while a lot of red collagen fibers were gathered in the ligamentum flavum non-preservation and autologous fat reposition groups.The area percentage of collagen fibers in the ligamentum flavum preservation group was lower than that in the ligamentum flavum non-preservation and autologous fat reposition groups at 3 and 6 weeks after surgery(P<0.05),but there was no significant difference between the latter two groups.The results of immunohistochemistry showed that the degree of positive staining of retained histone the ligamentum flavum preservation group was significantly lower than that of the other two groups.The absorbance value of transforming growth factor β1 and Smad3 in the ligamentum flavum preservation group was significantly lower than that in the other two groups at 3 and 6 weeks after surgery(P<0.05),but there was no significant difference between the latter two groups.To conclude,there are different degrees of epidural fibrous scar formation after lumbar surgery.If the ligamentum flavum is preserved,it can help to reduce the number of epidural fibroblasts as well as the formation of collagen fibers,thus reducing the adhesion of the fibrous scar tissue to the dural sac and nerve root.The mechanism is not only a purely mechanical blockade,but also to reduce the formation of epidural fibrous scar by interfering with the transforming growth factor β1/Smad3 signaling pathway.

Result Analysis
Print
Save
E-mail