1.Fangji Fuling Decoction Alleviates Sepsis by Blocking MAPK14/FOXO3A Signaling Pathway.
Yi WANG ; Ming-Qi CHEN ; Lin-Feng DAI ; Hai-Dong ZHANG ; Xing WANG
Chinese journal of integrative medicine 2024;30(3):230-242
OBJECTIVE:
To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.
METHODS:
A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed.
RESULTS:
FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05).
CONCLUSION
FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.
Mice
;
Animals
;
Mitogen-Activated Protein Kinase 14/metabolism*
;
Wolfiporia
;
Lipopolysaccharides/pharmacology*
;
Sepsis/complications*
;
Signal Transduction
;
Inflammation/drug therapy*
;
Oxygen Radioisotopes
2.Mechanism of Cistanches Herba in treatment of cancer-related fatigue based on network pharmacology and experimental verification.
Shi-Lei ZHANG ; Jia-Li LIU ; Fu-Kai GONG ; Jian-Hua YANG ; Jun-Ping HU
China Journal of Chinese Materia Medica 2023;48(5):1330-1342
This study aimed to explore the mechanism of Cistanches Herba in the treatment of cancer-induced fatigue(CRF) by network pharmacology combined with in vivo and in vitro experiments to provide a theoretical basis for the clinical medication. The chemical constituents and targets of Cistanches Herba were searched from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The targets of CRF were screened out by GeneCards and NCBI. The common targets of traditional Chinese medicine and disease were selected to construct a protein-protein interaction(PPI) network, followed by Gene Ontology(GO) functional and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. A visual signal pathway rela-ted to Chinese medicine and disease targets was constructed. The CRF model was induced by paclitaxel(PTX) in mice. Mice were divided into a control group, a PTX model group, and low-and high-dose Cistanches Herba extract groups(250 and 500 mg·kg~(-1)). The anti-CRF effect in mice was evaluated by open field test, tail suspension test, and exhaustive swimming time, and the pathological morphology of skeletal muscle was evaluated by hematoxylin-eosin(HE) staining. The cancer cachexia model in C2C12 muscle cells was induced by C26 co-culture, and the cells were divided into a control group, a conditioned medium model group, and low-, medium-, and high-dose Cistanches Herba extract groups(62.5, 125, and 250 μg·mL~(-1)). The reactive oxygen species(ROS) content in each group was detected by flow cytometry, and the intracellular mitochondrial status was evaluated by transmission electron microscopy. The protein expression levels of hypoxia-inducible factor-1α(HIF-1α), BNIP3L, and Beclin-1 were detected by Western blot. Six effective constituents were screened out from Cistanches Herba. The core genes of Cistanches Herba in treating CRF were AKT1, IL-6, VEGFA, CASP3, JUN, EGFR, MYC, EGF, MAPK1, PTGS2, MMP9, IL-1B, FOS, and IL10, and the pathways related to CRF were AGE-RAGE and HIF-1α. Through GO enrichment analysis, it was found that the main biological functions involved were lipid peroxidation, nutrient deficiency, chemical stress, oxidative stress, oxygen content, and other biological processes. The results of the in vivo experiment showed that Cistanches Herba extract could significantly improve skeletal muscle atrophy in mice to relieve CRF. The in vitro experiment showed that Cistanches Herba extract could significantly reduce the content of intracellular ROS, the percentage of mitochondrial fragmentation, and the protein expression of Beclin-1 and increase the number of autophagosomes and the protein expression of HIF-1α and BNIP3L. Cistanches Herba showed a good anti-CRF effect, and its mechanism may be related to the key target proteins in the HIF-1α signaling pathway.
Animals
;
Mice
;
Cistanche
;
Network Pharmacology
;
Beclin-1
;
Reactive Oxygen Species
;
Plant Extracts
;
Drugs, Chinese Herbal/pharmacology*
;
Molecular Docking Simulation
;
Medicine, Chinese Traditional
;
Neoplasms/genetics*
3.The role of Nrf2 in the alteration of tight junction protein expression in choroid plexus epithelial cells created by lanthanum-activated MMP9.
Jing SUN ; Xing Bo XU ; Hong Yue SU ; Li Cheng YAN ; Yan Shu ZHANG ; Li Jin ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(1):2-7
Objective: To investigate the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) in the alteration of tight junction protein expression in choroid plexus epithelial cells created by lanthanum-activated matrix metalloproteinase 9 (MMP9) . Methods: In October 2020, immortalized rat choroid plexus epithelial cell line (Z310) cells were used as the blood-cerebrospinal fluid barrier in vitro, and were divided into control group and 0.125, 0.25, 0.5 mmol/L lanthanum chloride (LaCl(3)) treatment group. After treating Z310 cells with different concentrations of LaCl(3) for 24 hours, the morphological changes of Z310 cells were observed under inverted microscope, the protein expression levels of MMP9, occludin and zonula occludens-1 (ZO-1) were observed by cellular immunofluorescence method, and the protein expression levels of MMP9, tissue inhibitors of metalloproteinase1 (TIMP1) , occludin, ZO-1 and Nrf2 were detected by Western blotting. The level of reactive oxygen species (ROS) in cells was detected by flow cytometry. Results: Compared with the control group, Z310 cells in the LaCl(3) treatment group were smaller in size, with fewer intercellular junctions, and more dead cells and cell fragments. The expression level of MMP9 protein in cells treated with 0.25 and 0.5 mmol/L LaCl(3) was significantly higher than that in the control group (P<0.05) , and the expression level of TIMP1 and tight junction proteins occudin and ZO-1 was significantly lower than that in the control group (P<0.05) . Compared with the control group, the ROS production level in the 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly increased (P<0.05) , and the Nrf2 protein expression level in the 0.125, 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly decreased (P<0.05) . Conclusion: Lanthanum may increase the level of ROS in cells by down regulating the expression of Nrf2, thus activating MMP9 to reduce the expression level of intercellular tight junction proteins occludin and ZO-1.
Rats
;
Animals
;
Matrix Metalloproteinase 9/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Tight Junction Proteins/metabolism*
;
Occludin/pharmacology*
;
Choroid Plexus/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Lanthanum/pharmacology*
;
Epithelial Cells
;
Zonula Occludens-1 Protein/metabolism*
;
Phosphoproteins/pharmacology*
4.Effects of interleukin-4-modified gold nanozymes on the full-thickness skin defects in diabetic mice.
Meng Yun YAO ; Ning ZHANG ; Qing ZHANG ; Yi Fei LU ; Yong HUANG ; Deng Feng HE ; Yun Xia CHEN ; Gao Xing LUO
Chinese Journal of Burns 2023;39(1):15-24
Objective: To investigate the effects and mechanism of interleukin-4-modified gold nanoparticle (IL-4-AuNP) on the wound healing of full-thickness skin defects in diabetic mice. Methods: Experimental research methods were adopted. Gold nanoparticle (AuNP) and IL-4-AuNP were synthesized by improving the methods described in published literature. The morphology of those two particles were photographed by transmission electron microscopy, and their particle sizes were calculated. The surface potential and hydration particle size of the two particles were detected by nanoparticle potentiometer and particle size analyzer, respectively. The clearance rate of IL-4-AuNP to hydrogen peroxide and superoxide anion was measured by hydrogen peroxide and superoxide anion kits, respectively. Mouse fibroblast line 3T3 cells were used and divided into the following groups by the random number table (the same below): blank control group, hydrogen peroxide alone group treated with hydrogen peroxide only, hydrogen peroxide+IL-4-AuNP group treated with IL-4-AuNP for 0.5 h and then treated with hydrogen peroxide. After 24 h of culture, the reactive oxygen species (ROS) levels of cells were detected by immunofluorescence method; cell count kit 8 was used to detect relative cell survival rate. The macrophage Raw264.7 mouse cells were then used and divided into blank control group and IL-4-AuNP group that treated with IL-4-AuNP. After 24 h of culture, the expression of arginase 1 (Arg-1) in cells was observed by immunofluorescence method. Twelve male BALB/c mice (mouse age, sex, and strain, the same below) aged 8 to 10 weeks were divided into IL-4-AuNP group and blank control group, treated accordingly. On the 16th day of treatment, whole blood samples were collected from mice for analysis of white blood cell count (WBC), red blood cell count (RBC), hemoglobin level, or platelet count and the level of aspartate aminotransferase (AST), alanine transaminase (ALT), urea, or creatinine. The inflammation, bleeding, or necrosis in the heart, liver, spleen, lung, and kidney tissue of mice were detected by hematoxylin-eosin (HE). Another 36 mice were selected to make diabetic model, and the full-thickness skin defect wounds were made on the back of these mice. The wounds were divided into blank control group, AuNP alone group, and IL-4-AuNP group, with 12 mice in each group, and treated accordingly. On the 0 (immediately), 4th, 9th, and 15th day of treatment, the wound condition was observed and the wound area was calculated. On the 9th day of treatment, HE staining was used to detect the length of neonatal epithelium and the thickness of granulation tissue in the wound. On the 15th day of treatment, immunofluorescence method was used to detect ROS level and the number of Arg-1 positive cells in the wound tissue. The number of samples was 6 in all cases. Data were statistically analyzed with independent sample t test, corrected t test, Tukey test, or Dunnett T3 test. Results: The size of prepared AuNP and IL-4-AuNP were uniform. The particle size, surface potential, and hydration particle size of AuNP and IL-4-AuNP were (13.0±2.1) and (13.9±2.5) nm, (-45.8±3.2) and (-20.3±2.2) mV, (14±3) and (16±4) nm, respectively. For IL-4-AuNP, the clearance rate to hydrogen peroxide and superoxide anion were (69±4)% and (52±5)%, respectively. After 24 h of culture, the ROS level of 3T3 in hydrogen peroxide alone group was significantly higher than that in blank control group (q=26.12, P<0.05); the ROS level of hydrogen peroxide+IL-4-AuNP group was significantly lower than that in hydrogen peroxide alone group (q=25.12, P<0.05) and close to that in blank control group (P>0.05). After 24 h of culture, the relative survival rate of 3T3 cells in hydrogen peroxide+IL-4-AuNP group was significantly higher than that in hydrogen peroxide alone group (t=51.44, P<0.05). After 24 h of culture, Arg-1 expression of Raw264.7 cells in IL-4-AuNP group was significantly higher than that in blank control group (t'=8.83, P<0.05).On the 16th day of treatment, there were no significant statistically differences in WBC, RBC, hemoglobin level, or platelet count and the level of AST, ALT, urea, or creatinine of mice between blank control group and IL-4-AuNP group (P>0.05). No obvious inflammation, bleeding or necrosis was observed in the heart, liver, spleen, lung, and kidney of important organs in IL-4-AuNP group, and no significant changes were observed compared with blank control group. On the 0 and 4th day of treatment, the wound area of diabetic mice in blank control group, AuNP alone group, and IL-4-AuNP group had no significant difference (P>0.05). On the 9th day of treatment, the wound areas both in AuNP alone group and IL-4-AuNP group were significantly smaller than that in blank control group (with q values of 9.45 and 14.87, respectively, P<0.05), the wound area in IL-4-AuNP group was significantly smaller than that in AuNP alone group (q=5.42, P<0.05). On the 15th day of treatment, the wound areas both in AuNP alone group and IL-4-AuNP group were significantly smaller than that in blank control group (with q values of 4.84 and 20.64, respectively, P<0.05), the wound area in IL-4-AuNP group was significantly smaller than that in AuNP alone group (q=15.80, P<0.05); moreover, inflammations such as redness and swelling were significantly reduced in IL-4-AuNP group compared with the other two groups. On the 9th day of treatment, compared with blank control group and AuNP alone group, the length of neonatal epithelium in the wound of diabetic mice in IL-4-AuNP group was significantly longer (all P<0.05), and the thickness of the granulation tissue in the wound was significantly increased (with q values of 11.33 and 9.65, respectively, all P<0.05). On the 15th day of treatment, compared with blank control group, ROS levels in wound tissue of diabetic mice in AuNP alone group and IL-4-AuNP group were significantly decreased (P<0.05). On the 15th day of treatment, the number of Arg-1 positive cells in the wounds of diabetic mice in IL-4-AuNP group was significantly more than that in blank control group and AuNP alone group, respectively (all P<0.05). Conclusions: IL-4-AuNP is safe in vivo, and can improve the oxidative microenvironment by removing ROS and induce macrophage polarization towards M2 phenotype, thus promote efficient diabetic wound healing and regeneration of full-thickness skin defects in diabetic mice.
Mice
;
Male
;
Animals
;
Interleukin-4
;
Gold/pharmacology*
;
Diabetes Mellitus, Experimental
;
Creatinine
;
Hydrogen Peroxide
;
Reactive Oxygen Species
;
Superoxides
;
Metal Nanoparticles
;
Soft Tissue Injuries
;
Antibodies
;
Inflammation
;
Necrosis
;
Hemoglobins
5.Flavonoid-Rich Extract of Oldenlandia diffusa (Willd.) Roxb. Inhibits Gastric Cancer by Activation of Caspase-Dependent Mitochondrial Apoptosis.
Jia-Yin LING ; Qiu-Lan WANG ; Hao-Nan LIANG ; Qing-Bo LIU ; Dong-Hong YIN ; Li LIN
Chinese journal of integrative medicine 2023;29(3):213-223
OBJECTIVE:
To evaluate the apoptosis and cycle arrest effects of Oldenlandia diffusa flavonoids on human gastric cancer cells, determine the action mechanisms in association with the mitochondrial dependent signal transduction pathway that controls production of reactive oxygen species (ROS), and evaluate the pharmacodynamics of a mouse xenotransplantation model to provide a reference for the use of flavonoids in prevention and treatment of gastric cancer.
METHODS:
Flavonoids were extracted by an enzymatic-ultrasonic assisted method and purified with D-101 resin. Bioactive components were characterized by high-performance liquid chromatography. Cell lines MKN-45, AGS, and GES-1 were treated with different concentrations of flavonoids (64, 96, 128, 160 µg/mL). The effect of flavonoids on cell viability was evaluated by MTT method, and cell nuclear morphology was observed by Hoechst staining. The apoptosis rate and cell cycle phases were measured by flow cytometry, the production of ROS was detected by laser confocal microscope, the mitochondrial membrane potential (MMP) were observed by fluorescence microscope, and the expression of apoptotic proteins related to activation of mitochondrial pathway were measured by immunoblotting. MKN-45 cells were transplanted into BALB/c nude mice to establish a xenograft tumor model. Hematoxylin and eosin staining was used to reveal the subcutaneous tumor tissue. The tumor volume and tumor weight were measured, the expression levels of proliferation markers proliferating cell nuclear antigen (PCNA) and Ki-67 were detected by immunohistochemistry, and the expression levels of CA72-4 were measured by enzyme linked immunosorbent assay.
RESULTS:
Oldenlandia diffusa flavonoids inhibited proliferation of MKN-45 and AGS human gastric cancer cells, arrested the cell cycle in G1/S phase, induced accumulation of ROS in the process of apoptosis, and altered MMP. In addition, flavonoids increased Apaf-1, Cleaved-Caspase-3, and Bax, and decreased Cyclin A, Cdk2, Bcl-2, Pro-Caspase-9, and Mitochondrial Cytochrome C (P<0.05). The MKN-45 cell mouse xenotransplantation model further clarified the growth inhibitory effect of flavonoids towards tumors. The expression levels of PCNA and Ki-67 decreased in each flavonoid dose group, the expression level of CA72-4 decreased (P<0.05).
CONCLUSION
Flavonoids derived from Oldenlandia diffusa can inhibit proliferation and induce apoptosis of human gastric cancer cells by activating the mitochondrial controlled signal transduction pathway.
Humans
;
Animals
;
Mice
;
Oldenlandia/metabolism*
;
Proliferating Cell Nuclear Antigen
;
Stomach Neoplasms
;
Flavonoids/pharmacology*
;
Reactive Oxygen Species/metabolism*
;
Mice, Nude
;
Ki-67 Antigen
;
Cell Line, Tumor
;
Apoptosis
;
Plant Extracts/pharmacology*
;
Caspases
;
Cell Proliferation
6.PPAR-γ activation promotes xenogenic bioroot regeneration by attenuating the xenograft induced-oxidative stress.
Tingting LAN ; Fei BI ; Yuchan XU ; Xiaoli YIN ; Jie CHEN ; Xue HAN ; Weihua GUO
International Journal of Oral Science 2023;15(1):10-10
Xenogenic organ transplantation has been considered the most promising strategy in providing possible substitutes with the physiological function of the failing organs as well as solving the problem of insufficient donor sources. However, the xenograft, suffered from immune rejection and ischemia-reperfusion injury (IRI), causes massive reactive oxygen species (ROS) expression and the subsequent cell apoptosis, leading to the xenograft failure. Our previous study found a positive role of PPAR-γ in anti-inflammation through its immunomodulation effects, which inspires us to apply PPAR-γ agonist rosiglitazone (RSG) to address survival issue of xenograft with the potential to eliminate the excessive ROS. In this study, xenogenic bioroot was constructed by wrapping the dental follicle cells (DFC) with porcine extracellular matrix (pECM). The hydrogen peroxide (H2O2)-induced DFC was pretreated with RSG to observe its protection on the damaged biological function. Immunoflourescence staining and transmission electron microscope were used to detect the intracellular ROS level. SD rat orthotopic transplantation model and superoxide dismutase 1 (SOD1) knockout mice subcutaneous transplantation model were applied to explore the regenerative outcome of the xenograft. It showed that RSG pretreatment significantly reduced the adverse effects of H2O2 on DFC with decreased intracellular ROS expression and alleviated mitochondrial damage. In vivo results confirmed RSG administration substantially enhanced the host's antioxidant capacity with reduced osteoclasts formation and increased periodontal ligament-like tissue regeneration efficiency, maximumly maintaining the xenograft function. We considered that RSG preconditioning could preserve the biological properties of the transplanted stem cells under oxidative stress (OS) microenvironment and promote organ regeneration by attenuating the inflammatory reaction and OS injury.
Mice
;
Humans
;
Rats
;
Animals
;
Swine
;
PPAR gamma/pharmacology*
;
Reactive Oxygen Species/pharmacology*
;
Heterografts
;
Hydrogen Peroxide/pharmacology*
;
Rats, Sprague-Dawley
;
Rosiglitazone/pharmacology*
;
Oxidative Stress
7.In vitro and in vivo anticancer potential and molecular targets of the new colchicine analog IIIM-067.
Sumera MALIK ; Mubashir J MINTOO ; Chilakala Nagarjuna REDDY ; Rajesh KUMAR ; Pankul KOTWAL ; Sandip B BHARATE ; Utpal NANDI ; Dilip M MONDHE ; Sanket K SHUKLA
Journal of Integrative Medicine 2023;21(1):62-76
OBJECTIVE:
The current study evaluated various new colchicine analogs for their anticancer activity and to study the primary mechanism of apoptosis and in vivo antitumor activity of the analogs with selective anticancer properties and minimal toxicity to normal cells.
METHODS:
Sulforhodamine B (SRB) assay was used to screen various colchicine analogs for their in vitro cytotoxicity. The effect of N-[(7S)-1,2,3-trimethoxy-9-oxo-10-(pyrrolidine-1-yl)5,6,7,9-tetrahydrobenzo[a] heptalene-7-yl] acetamide (IIIM-067) on clonogenicity, apoptotic induction, and invasiveness of A549 cells was determined using a clonogenic assay, scratch assay, and staining with 4',6-diamidino-2-phenylindole (DAPI) and annexin V/propidium iodide. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were observed using fluorescence microscopy. Western blot analysis was used to quantify expression of proteins involved in apoptosis, cell cycle, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Pharmacokinetic and in vivo efficacy studies against Ehrlich ascites carcinoma (EAC) and Ehrlich solid tumor models were conducted using Swiss albino mice.
RESULTS:
IIIM-067 showed potent cytotoxicity and better selectivity than all other colchicine analogs screened in this study. The selective activity of IIIM-067 toward A549 cells was higher among other cancer cell lines, with a selectivity index (SI) value of 2.28. IIIM-067 demonstrated concentration- and time-dependent cytotoxicity against A549 cells with half-maximal inhibitory concentration values of 0.207, 0.150 and 0.106 μmol/L at 24, 48 and 72 h, respectively. It also had reduced toxicity to normal cells (SI > 1) than the parent compound colchicine (SI = 1). IIIM-067 reduced the clonogenic ability of A549 cells in a dose-dependent manner. IIIM-067 enhanced ROS production from 24.6% at 0.05 μmol/L to 82.1% at 0.4 μmol/L and substantially decreased the MMP (100% in control to 5.6% at 0.4 μmol/L). The annexin V-FITC assay demonstrated 78% apoptosis at 0.4 μmol/L. IIIM-067 significantly (P < 0.5) induced the expression of various intrinsic apoptotic pathway proteins, and it differentially regulated the PI3K/AKT/mTOR signaling pathway. Furthermore, IIIM-067 exhibited remarkable in vivo anticancer activity against the murine EAC model, with tumor growth inhibition (TGI) of 67.0% at a dose of 6 mg/kg (i.p.) and a reduced mortality compared to colchicine. IIIM-067 also effectively inhibited the tumor growth in the murine solid tumor model with TGI rates of 48.10%, 55.68% and 44.00% at doses of 5 mg/kg (i.p.), 6 mg/kg (i.p.) and 7 mg/kg (p.o.), respectively.
CONCLUSION
IIIM-067 exhibited significant anticancer activity with reduced toxicity both in vitro and in vivo and is a promising anticancer candidate. However, further studies are required in clinical settings to fully understand its potential.
Animals
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Antineoplastic Agents, Phytogenic/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Reactive Oxygen Species/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Colchicine/pharmacology*
;
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Mammals/metabolism*
8.Preparation, characterization and biocompatibility of calcium peroxide-loaded polycaprolactone microparticles.
Leidong LIAN ; Zechen SUN ; Jinhao ZHANG ; Shirong GU ; Chenjie XIA ; Kaifeng GAN
Journal of Zhejiang University. Medical sciences 2023;52(3):296-305
OBJECTIVES:
To explore the physicochemical characteristics and biocompatibility of calcium peroxide (CPO)-loaded polycaprolactone (PCL) microparticle.
METHODS:
The CPO/PCL particles were prepared. The morphology and elemental distribution of CPO, PCL and CPO/PCL particles were observed with scanning electron microscopy and energy dispersive spectroscopy, respectively. Rat adipose mesenchymal stem cells were isolated and treated with different concentrations (0.10%, 0.25%, 0.50%, 1.00%) of CPO or CPO/PCL particles. The mesenchymal stem cells were cultured in normal media or osteogenic differentiation media under the hypoxia/normoxia conditions, and the amount of released O2 and H2O2 after CPO/PCL treatment were detected. The gene expressions of alkaline phosphatase (ALP), Runt-associated transcription factor 2 (RUNX2), osteopontin (OPN) and osteocalcin (OCN) were detected by realtime RT-PCR. SD rats were subcutaneously injected with 1.00% CPO/PCL particles and the pathological changes and infiltration of immune cells were observed with HE staining and immunohistochemistry at day 7 and day 14 after injection.
RESULTS:
Scanning electron microscope showed that CPO particles had a polygonal structure, PCL particles were in a small spherical plastic particle state, and CPO/PCL particles had a block-like crystal structure. Energy dispersive spectroscopy revealed that PCL particles showed no calcium mapping, while CPO/PCL particles showed obvious and uniform calcium mapping. The concentrations of O2 and H2O2 released by CPO/PCL particles were lower than those of CPO group, and the oxygen release time was longer. The expressions of Alp, Runx2, Ocn and Opn increased with the higher content of CPO/PCL particles under hypoxia in osteogenic differentiation culture and normal culture, and the induction was more obvious under osteogenic differentiation conditions (all P<0.05). HE staining results showed that the muscle tissue fibers around the injection site were scattered and disorderly distributed, with varying sizes and thicknesses at day 7 after particle injection. Significant vascular congestion, widened gaps, mild interstitial congestion, local edema, inflammatory cell infiltration, and large area vacuolization were observed in some tissues of rats. At day 14 after microparticle injection, the muscle tissue around the injection site and the tissue fibers at the microparticle implantation site were arranged neatly, and the gap size was not thickened, the vascular congestion, local inflammatory cell infiltration, and vacuolization were significantly improved compared with those at day 7. The immunohistochemical staining results showed that the expressions of CD3 and CD68 positive cells significantly increased in the surrounding muscle tissue, and were densely distributed in a large area at day 7 after particle injection. At day 14 of microparticle injection, the numbers of CD3 and CD68 positive cells in peripheral muscle tissue and tissue at the site of particle implantation were lower than those at day 7 (all P<0.01).
CONCLUSIONS
CPO/PCL particles have good oxygen release activity, low damage to tissue, and excellent biocompatibility.
Rats
;
Animals
;
Osteogenesis
;
Core Binding Factor Alpha 1 Subunit
;
Rats, Sprague-Dawley
;
Hydrogen Peroxide/pharmacology*
;
Cell Differentiation
;
Oxygen
;
Hypoxia
;
Cells, Cultured
9.Lipid nanoparticle delivery of siRNA targeting Cyp2e1 gene attenuates subacute alcoholic liver injury in mice.
Shuang WU ; Qiubing CHEN ; Yalan WANG ; Hao YIN ; Yuan WEI
Journal of Zhejiang University. Medical sciences 2023;52(3):306-317
OBJECTIVES:
To investigate the effect and mechanism of lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) targeting Cyp2e1 gene on subacute alcoholic liver injury in mice.
METHODS:
siRNA targeting Cyp2e1 gene was encapsulated in LNP (si-Cyp2e1 LNP) by microfluidic technique and the resulting LNPs were characterized. The optimal dose of si-Cyp2e1 LNP administration was screened. Forty female C57BL/6N mice were randomly divided into blank control group, model control group, si-Cyp2e1 LNP group, LNP control group and metadoxine group. The subacute alcoholic liver injury mouse model was induced by ethanol feeding for 10 d plus ethanol gavage for the last 3 d. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and the superoxide dismutase (SOD) activity as well as malondialdehyde, reactive oxygen species, glutathione, triacylglycerol, total cholesterol contents in liver tissue were measured in each group, and liver index was calculated. The expression of genes related to oxidative stress, lipid synthesis and inflammation in each group of mice were measured by realtime RT-PCR.
RESULTS:
Compared with the model control group, the levels of liver index, serum ALT, AST activities, malondialdehyde, reactive oxygen species, triacylglycerol, total cholesterol contents in liver tissue decreased, but the SOD activity as well as glutathione increased in the si-Cyp2e1 LNP group (all P<0.01). Hematoxylin-eosin staining result showed disorganized hepatocytes with sparse cytoplasm and a large number of fat vacuoles and necrosis in the model control group, while the si-Cyp2e1 LNP group had uniformly sized and arranged hepatocytes with normal liver tissue morphology and structure. Oil red O staining result showed si-Cyp2e1 LNP group had lower fat content of the liver compared to the model control group (P<0.01), and no fat droplets accumulated. Anti-F4/80 monoclonal antibody fluorescence immunohistochemistry showed that the si-Cyp2e1 LNP group had lower cumulative optical density values compared to the model control group (P<0.01) and no significant inflammatory reaction. Compared with the model control group, the expression of catalytic genes P47phox, P67phox and Gp91phox were reduced (all P<0.01), while the expression of the antioxidant enzyme genes Sod1, Gsh-rd and Gsh-px were increased (all P<0.01). The mRNA expression of the lipid metabolism genes Pgc-1α and Cpt1 were increased (all P<0.01) and the lipid synthesis-related genes Srebp1c, Acc and Fasn were decreased (all P<0.01); the expression of liver inflammation-related genes Tgf-β, Tnf-α and Il-6 were decreased (all P<0.01).
CONCLUSIONS
The si-Cyp2e1 LNP may attenuate subacute alcoholic liver injury in mice mainly by reducing reactive oxygen levels, increasing antioxidant activity, blocking oxidative stress pathways and reducing ethanol-induced steatosis and inflammation.
Animals
;
Female
;
Mice
;
Antioxidants/metabolism*
;
Cholesterol/metabolism*
;
Ethanol/pharmacology*
;
Glutathione/pharmacology*
;
Inflammation
;
Lipids/pharmacology*
;
Liver
;
Malondialdehyde/pharmacology*
;
Mice, Inbred C57BL
;
Oxidative Stress
;
Reactive Oxygen Species/metabolism*
;
RNA, Small Interfering/pharmacology*
;
Superoxide Dismutase
;
Triglycerides/metabolism*
;
Cytochrome P-450 CYP2E1/metabolism*
10.Effect of P-coumaric Acid on Apoptosis of Multiple Myeloma Cells Based on Oxidative Stress.
Zhu-Fa HOU ; Bing-Jie ZHAO ; Song-Shan LIU ; Wen-Jing YI ; Hong CHE
Journal of Experimental Hematology 2023;31(2):435-441
OBJECTIVE:
To investigate the effect of p-coumaric acid on apoptosis of multiple myeloma cells and its related mechanism.
METHODS:
Multiple myeloma cell line MM.1s cells were selected and treated with different concentrations of p-coumaric acid (0, 0.4, 0.8, 1.6, 3.2 mmol/L), and the inhibition rate and half inhibition concentration (IC50) were detected by CCK-8 method. Then MM.1s cells were treated with 1/2 IC50, IC50, 2 IC50 and transfected with ov-Nrf-2 and ov-Nrf-2+IC50. The apoptosis, ROS fluorescence intensity and mitochondrial membrane potential of MM.1s cells were detected by flow cytometry, and the relative expressions of cellular Nrf-2 and HO-1 protein were detected by Western blot.
RESULTS:
P-coumaric acid inhibited the proliferation of MM.1s cells in a dose-dependent manner(r =0.997) with an IC50 value of 2.754 mmol/L. Compared with the control group, apoptosis and ROS fluorescence intensity of MM.1s cells were significantly increased in the 1/2 IC50 group, IC50 group, 2 IC50 group and ov-Nrf-2+IC50 group (P <0.01), the expressions of Nrf-2, HO-1 protein in the IC50 group and 2 IC50 group were significantly decreased (P <0.05). Compared with the IC50 group, the cells apoptosis and ROS fluorescence intensity were significantly decreased (P <0.01), and the expressions of Nrf-2 and HO-1 protein were significantly increased in the ov-Nrf-2+IC50 group (P <0.01).
CONCLUSION
P-coumaric acid can inhibit the proliferation of MM.1s cells and may target the Nrf-2/HO-1 signaling pathway to affect oxidative stress in MM cells thereby inducing their apoptosis.
Humans
;
Reactive Oxygen Species/pharmacology*
;
Cell Line, Tumor
;
Multiple Myeloma
;
Oxidative Stress
;
Apoptosis

Result Analysis
Print
Save
E-mail