1.Mechanism of Compound Ziyin Granules in improving postmenopausal osteoporosis by modulating Wnt/β-catenin pathway.
Wen-Jing LIU ; Fan XIE ; Piao-Piao WANG ; Yu-Ting SUN ; Wen-Yan LI
China Journal of Chinese Materia Medica 2025;50(16):4659-4667
This study investigates the therapeutic effect and underlying mechanism of Compound Ziyin Granules(CZYG) on postmenopausal osteoporosis(PMOP) induced by bilateral ovariectomy in rats. Six-month-old female SD rats were randomly divided into sham-operated(sham) group, ovariectomy(OVX) model group, high-, medium-, and low-dose CZYG groups, and alendronate sodium(AS) group. After 30 days of model establishment, treatment was administered by gavage once daily for 8 weeks, followed by sample collection. Enzyme-linked immunosorbent assay(ELISA) was used to measure serum levels of calcium ions, alkaline phosphatase(AKP), estrogen(E_2), osteoprotegerin(OPG), osteocalcin(BGP), tartrate-resistant acid phosphatase(TRAP), and type Ⅰ procollagen N-terminal propeptide(PINP). Hematoxylin-eosin(HE) staining was used to observe the histopathological changes in the femurs of rats, while micro-computed tomography(micro-CT) was used to analyze the microstructure of the distal femur. Western blot analysis was performed to measure the expression levels of bone metabolism-related proteins, including wingless-type MMTV integration site family member 2(Wnt2), β-catenin, low-density lipoprotein receptor-related protein 5(LRP5), glycogen synthase kinase-3β(GSK-3β). The mRNA expression levels of Wnt2, β-catenin, LRP5, GSK-3β, p-GSK-3β were determined by quantitative real-time PCR(qRT-PCR). Thirty days after bilateral ovariectomy, compared to the sham group, the OVX group showed significant increases in body weight and significant decreases in uterine coefficient. After 8 weeks of treatment, compared to the OVX group, CZYG(medium and high doses) and AS reduced body weight, with high-dose CZYG and AS significantly increasing the uterine coefficient. Serum levels of AKP and TRAP were significantly elevated, while levels of calcium, E_2, BGP, and OPG were significantly decreased in the OVX group. Compared to the OVX group, CZYG and AS significantly reduced serum levels of AKP and TRAP, while high-dose CZYG and AS notably increased the levels of E_2, BGP, OPG, and PINP. Micro-CT and HE staining results indicated that CZYG(medium and high doses) and AS significantly increased bone tissue volume, trabecular number, bone mineral density, and improved the microstructure of the femur. Compared to the OVX group, high-dose CZYG and AS significantly upregulated the protein and mRNA expression levels of Wnt2, β-catenin, and LRP5, and downregulated the phosphorylation level of p-GSK-3β. These results suggest that CZYG can improve PMOP by promoting estrogen secretion, improving bone metabolism indicators, increasing trabecular number and bone mineral density. Its mechanism may be related to the regulation of the Wnt/β-catenin signaling pathway.
Animals
;
Female
;
Rats, Sprague-Dawley
;
Osteoporosis, Postmenopausal/genetics*
;
Rats
;
Wnt Signaling Pathway/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
beta Catenin/genetics*
;
Osteoprotegerin/metabolism*
;
Ovariectomy
;
Calcium/blood*
;
Bone Density/drug effects*
2.Experimental study on the treatment of postmenopausal osteoporosis with low-frequency pulsed electromagnetic fields.
Zidong AN ; Liqiang WANG ; Yi WU ; Yongjie PANG ; Keming CHEN ; Yuhai GAO
Journal of Biomedical Engineering 2025;42(5):1054-1061
This study aims to investigate the therapeutic efficacy of 50 Hz-0.6 mT low-frequency pulsed electromagnetic field (PEMF) on postmenopausal osteoporosis in ovariectomized rats. Thirty 3-month-old female SD rats were selected and divided into a sham operation group (Sham), an ovariectomized model group (OVX), and a low-frequency pulsed electromagnetic field (PEMF) treatment group, with 10 rats in each group. After 8 weeks, the whole-body bone mineral density (BMD) of each group of rats was measured. The treatment group began to receive PEMF stimulation for 90 minutes daily, while the OVX group only received a simulated placement without electricity. After 6 weeks of intervention, all rats were sacrificed and tested for in vitro BMD, micro-CT, biomechanics, serum biochemical indicators, and bone tissue-related proteins. The results showed that the BMD of the OVX group was significantly lower than that of the Sham group 8 weeks after surgery, indicating successful modeling. After 6 weeks of treatment, compared with the OVX group, the PEMF group exhibited significantly increased BMD in the whole body, femur, and vertebral bodies. Micro-CT analysis results showed improved bone microstructure, significantly increased maximum load and bending strength of the femur, elevated levels of serum bone formation markers, and increased expression of osteogenic-related proteins. In conclusion, this study demonstrates that daily 90-minute exposure to 50 Hz-0.6 mT PEMF effectively enhances BMD, improves bone biomechanical properties, optimizes bone microstructure, stimulates bone formation, and inhibits bone resorption in ovariectomized rats, highlighting its therapeutic potential for postmenopausal osteoporosis.
Female
;
Animals
;
Rats, Sprague-Dawley
;
Osteoporosis, Postmenopausal/therapy*
;
Rats
;
Bone Density
;
Ovariectomy
;
Magnetic Field Therapy/methods*
;
Electromagnetic Fields
3.Exosome derived from human adipose-derived mesenchymal stem cells prevented bone loss induced by estrogen deficiency.
Chunhui SHENG ; Xiao ZHANG ; Longwei LV ; Yongsheng ZHOU
Journal of Peking University(Health Sciences) 2025;57(2):217-226
OBJECTIVE:
To investigate the effect of human adipose-derived mesenchymal stem cells (hASCs) exosomes on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) extracted from osteoporotic mice, and to evaluate the effect of hASCs exosomes on preventing bone loss induced by estrogen deficiency.
METHODS:
hASCs exosomes were extracted by ultracentrifugation. The osteoporotic mice were established by bilateral ovariectomy (OVX). BMSCs were isolated from osteo-porotic mice and cultured for further analysis. In the experimental group, these BMSCs were exposed to an osteogenic induction medium supplemented with hASCs exosomes to evaluate their potential effects on osteogenesis. In contrast, the control group was treated with the same osteogenic induction medium, but without the addition of hASCs exosomes, to serve as a baseline comparison for the study. To comprehensively assess the osteogenic differentiation of BMSCs influenced by hASCs exosomes, alkaline phosphatase (ALP) staining, ALP activity quantitative analysis and quantitative reverse transcription polymerase chain reaction (qPCR) were performed. These evaluations provided critical insights into the role of hASCs exosomes in promoting osteoblast differentiation and bone formation in osteoporotic conditions. The fluorescence labeled hASCs exosomes were injected via the tail vein to observe the biodistribution of exosomes. Two weeks after OVX, the mice were divided into three groups: The experimental group consisted of estrogen-deficient mice receiving hASCs exosome injections; the negative control group consisted of estrogen-deficient mice receiving phosphate-buffered saline (PBS) injections; and the positive control group consisted of mice that underwent Sham surgery and received PBS injections.The injections were administered once every 3 days, for a total of 8 injections. Afterward, the femurs were collected from the mice, and micro-computed tomography (micro-CT) was performed to measure bone mineral density and conduct bone morphometric analysis.
RESULTS:
hASCs exosomes were successfully extracted using ultracentrifugation. After the induction by hASCs exosomes, ALP staining and ALP activity in the BMSCs extracted from osteoporotic mice were significantly enhanced, the expression of osteogenesis related genes in BMSCs were significantly up-regulated. More trabecular bone and higher bone mineral density were observed in estrogen-deficient mice injected with hASCs exosomes compared with estrogen-deficient mice injected with PBS, and there was no significant decrease in bone mineral density compared with the Sham operation group.
CONCLUSION
hASCs exosomes promoted the osteogenic differentiation of BMSCs extracted from osteoporotic mice. hASCs exosomes prevented bone loss induced by estrogen deficiency.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Exosomes
;
Estrogens/deficiency*
;
Humans
;
Osteogenesis
;
Cell Differentiation
;
Female
;
Mice
;
Osteoporosis/prevention & control*
;
Ovariectomy
;
Adipose Tissue/cytology*
;
Cells, Cultured
4.Plastrum Testudinis Stimulates Bone Formation through Wnt/β-catenin Signaling Pathway Regulated by miR-214.
Qing LIN ; Bi-Yi ZHAO ; Xiao-Yun LI ; Wei-Peng SUN ; Hong-Hao HUANG ; Yu-Mei YANG ; Hao-Yu WANG ; Xiao-Feng ZHU ; Li YANG ; Rong-Hua ZHANG
Chinese journal of integrative medicine 2025;31(8):707-716
OBJECTIVE:
To investigate the Wnt signaling pathway and miRNAs mechanism of extracts of Plastrum Testudinis (PT) in the treatment of osteoporosis (OP).
METHODS:
Thirty female Sprague Dawley rats were randomly divided into 5 groups by random number table method, including sham group, ovariectomized group (OVX), ovariectomized groups treated with high-, medium-, and low-dose PT (160, 80, 40 mg/kg per day, respectively), with 6 rats in each group. Except for the sham group, the other rats underwent bilateral ovariectomy to simulate OP and received PT by oral gavage for 10 consecutive weeks. After treatment, bone mineral density was measured by dual-energy X-ray absorptiometry; bone microstructure was analyzed by micro-computed tomography and hematoxylin and eosin staining; and the expressions of osteogenic differentiation-related factors were detected by immunochemistry, Western blot, and quantitative polymerase chain reaction. In addition, Dickkopf-1 (Dkk-1) was used to inhibit the Wnt signaling pathway in bone marrow mesenchymal stem cells (BMSCs) and miRNA overexpression was used to evaluate the effect of miR-214 on the osteogenic differentiation of BMSCs. Subsequently, PT extract was used to rescue the effects of Dkk-1 and miR-214, and its impacts on the osteogenic differentiation-related factors of BMSCs were evaluated.
RESULTS:
PT-M and PT-L significantly reduced the weight gain in OVX rats (P<0.05). PT also regulated the bone mass and bone microarchitecture of the femur in OVX rats, and increased the expressions of bone formation-related factors including alkaline phosphatase, bone morphogenetic protein type 2, collagen type I alpha 1, and runt-related transcription factor 2 when compared with the OVX group (P<0.05 or P<0.01). Meanwhile, different doses of PT significantly rescued the inhibition of Wnt signaling pathway-related factors in OVX rats, and increased the mRNA or protein expressions of Wnt3a, β-catenin, glycogen synthase kinase-3β, and low-density lipoprotein receptor-related protein 5 (P<0.05 or P<0.01). PT stimulated the osteogenic differentiation of BMSCs inhibited by Dkk-1 and activated the Wnt signaling pathway. In addition, the expression of miR-214 was decreased in OVX rats (P<0.01), and it was negatively correlated with the osteogenic differentiation of BMSCs (P<0.01). MiR-214 mimic inhibited Wnt signaling pathway in BMSCs (P<0.05 or P<0.01). Conversely, PT effectively counteracted the effect of miR-214 mimic, thereby activating the Wnt signaling pathway and stimulating osteogenic differentiation in BMSCs (P<0.05 or P<0.01).
CONCLUSION
PT stimulates bone formation in OVX rats through β-catenin-mediated Wnt signaling pathway, which may be related to inhibiting miR-214 in BMSCs.
Animals
;
MicroRNAs/genetics*
;
Female
;
Rats, Sprague-Dawley
;
Wnt Signaling Pathway/genetics*
;
Osteogenesis/genetics*
;
Mesenchymal Stem Cells/cytology*
;
Cell Differentiation/drug effects*
;
Bone Density/drug effects*
;
Ovariectomy
;
Osteoporosis/drug therapy*
;
beta Catenin/metabolism*
;
Rats
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
5.Effect of astragaloside IV on osteogenic differentiation of BMSCs in osteoporotic rats via regulation of miR-21 and inhibition of the Notch signaling pathway.
Jingjing XIAO ; Xiaolan LIU ; Jianying HUANG ; Ben DOU
Journal of Central South University(Medical Sciences) 2025;50(7):1126-1136
OBJECTIVES:
The core pathology of osteoporosis lies in bone resorption exceeding bone formation; thus, promoting osteogenesis is a key therapeutic strategy. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) forms the biological basis of bone formation. Astragaloside IV (A-IV), a major active component of Astragalus membranaceus, is known to enhance osteogenesis, but its precise molecular mechanisms remain unclear. This study aims to investigate the effects of A-IV on the proliferation and osteogenic differentiation of BMSCs from osteoporotic rats and to elucidate its molecular mechanism through the regulation of microRNA-21 (miR-21) and Notch2 expression.
METHODS:
After 1 week of adaptive feeding, mature female SD rats were randomly divided into a sham-operated (Sham) group (n=4) and an ovariectomized (OVX) group (n=8) to establish an osteoporosis model. Twelve weeks after surgery, BMSCs were isolated from femoral bone marrow and cultured. Cells were divided into a S-BMSCs group (from Sham), an O-BMSCs group (from OVX), and an A-BMSCs group (from OVX-derived BMSCs treated with A-IV). S-BMSCs and O-BMSCs were induced for osteogenic differentiation using osteogenic induction medium, whereas A-BMSCs were treated with A-IV before induction. Flow cytometry was used to identify mesenchymal stem cell surface markers (CD29) and hematopoietic stem cell marker (CD34) to confirm BMSC characteristics. Cell proliferation was assessed using the methyl thiazolyl tetrazolium (MTT) assay. Alizarin red staining was performed to quantify calcium nodule formation, and alkaline phosphatase (ALP) activity assays were used to evaluate osteogenic differentiation. Real-time reverse transcription PCR (real-time RT-PCR) was used to detect changes in osteogenic-related genes, runt-related transcription factor 2 (Runx2) and osteopontin (OPN), as well as miR-21 expression. Western blotting was performed to assess Runx2, OPN, and Notch2 protein expression.
RESULTS:
Flow cytometry confirmed that O-BMSCs retained the phenotypic characteristics of mesenchymal stem cells. A-IV significantly enhanced the proliferation of BMSCs from osteoporotic rats (P<0.05), increased ALP activity, and upregulated the mRNA and protein expression of Runx2 and OPN (P<0.05). Bioinformatic and experimental analyses demonstrated that miR-21 directly targeted Notch2. A-IV treatment increased miR-21 expression while suppressing Notch2 protein expression and inhibiting activation of the Notch signaling pathway (P<0.05).
CONCLUSIONS
Astragaloside IV promotes the osteogenic differentiation of BMSCs derived from osteoporotic rats by upregulating miR-21 expression and inhibiting the key Notch signaling protein Notch2, thereby relieving the Notch2-mediated suppression of osteogenesis.
Animals
;
Triterpenes/pharmacology*
;
Saponins/pharmacology*
;
Osteogenesis/drug effects*
;
MicroRNAs/metabolism*
;
Rats, Sprague-Dawley
;
Female
;
Cell Differentiation/drug effects*
;
Mesenchymal Stem Cells/drug effects*
;
Signal Transduction/drug effects*
;
Osteoporosis/pathology*
;
Rats
;
Cells, Cultured
;
Receptor, Notch2/metabolism*
;
Receptors, Notch/metabolism*
;
Ovariectomy
;
Cell Proliferation/drug effects*
6.Regulatory effects of moxibustion at "Guanyuan" (CV4) on extragonadal estrogen and estrogen receptors in ovariectomized rats.
Qingchen ZHOU ; Xinyan GAO ; Kun LIU ; Bing ZHU
Chinese Acupuncture & Moxibustion 2025;45(12):1770-1776
OBJECTIVE:
To observe the regulatory effects of moxibustion at "Guanyuan" (CV4) on the synthesis of extragonadal estradiol (E2) and the expression of estrogen receptor (ER) in ovariectomized rats, aiming to explore the mechanism of moxibustion treatment for perimenopausal syndrome.
METHODS:
Forty-eight SD female rats of SPF grade were randomly divided into a sham-operation group, a model group and a moxibustion group, with 16 rats in each group. The model group and the moxibustion group underwent bilateral ovariectomy by the back incision method. Ten days after surgery, moxibustion was applied at "Guanyuan" (CV4) in the moxibustion group, 30 min each time, once a day for 10 days. After intervention, in the 3 groups, the body mass and uterus weight were measured; the serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH) and E2, as well as the skin and hypothalamus levels of E2 were detected by ELISA; the mRNA expression of aromatase (P450arom) in the skin and hypothalamus was detected by real-time PCR; the expression of ERα and ERβ in the hypothalamus, skin, and uterus was observed by immunofluorescence staining, and the density of positive cells was calculated using the Aipathwell digital pathology image analysis software.
RESULTS:
Compared with the sham-operation group, the body mass was increased (P<0.01) and the uterus weight was decreased (P<0.001) in the model group. Compared with the model group, the body mass was decreased in the moxibustion group (P<0.01). Compared with the sham-operation group, in the model group, the serum, hypothalamus and skin levels of E2 were decreased (P<0.01, P<0.05), while the serum levels of FSH and LH were increased (P<0.01); the expression of ERα and ERβ in the skin, hypothalamus and uterus was decreased (P<0.05, P<0.001). Compared with the model group, in the moxibustion group, the serum levels of E2 and LH, as well as the hypothalamus and skin levels of E2 were increased (P<0.05, P<0.01); the mRNA expression of P450arom, as well as the expression of ERα and ERβ in the skin and hypothalamus were increased (P<0.05).
CONCLUSION
Moxibustion at "Guanyuan" (CV4) reduces the body mass of ovariectomized rats by enhancing the synthesis of extragonadal E2 and increasing the expression of ER in the skin and hypothalamus, yet it does not alleviate uterine atrophy.
Animals
;
Female
;
Moxibustion
;
Rats
;
Ovariectomy
;
Acupuncture Points
;
Rats, Sprague-Dawley
;
Humans
;
Receptors, Estrogen/genetics*
;
Estrogens/metabolism*
;
Estradiol/metabolism*
;
Hypothalamus/metabolism*
;
Follicle Stimulating Hormone/blood*
;
Aromatase/genetics*
;
Luteinizing Hormone/blood*
;
Skin/metabolism*
7.Buqi-Tongluo Decoction inhibits osteoclastogenesis and alleviates bone loss in ovariectomized rats by attenuating NFATc1, MAPK, NF-κB signaling.
Yongxian LI ; Jinbo YUAN ; Wei DENG ; Haishan LI ; Yuewei LIN ; Jiamin YANG ; Kai CHEN ; Heng QIU ; Ziyi WANG ; Vincent KUEK ; Dongping WANG ; Zhen ZHANG ; Bin MAI ; Yang SHAO ; Pan KANG ; Qiuli QIN ; Jinglan LI ; Huizhi GUO ; Yanhuai MA ; Danqing GUO ; Guoye MO ; Yijing FANG ; Renxiang TAN ; Chenguang ZHAN ; Teng LIU ; Guoning GU ; Kai YUAN ; Yongchao TANG ; De LIANG ; Liangliang XU ; Jiake XU ; Shuncong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):90-101
Osteoporosis is a prevalent skeletal condition characterized by reduced bone mass and strength, leading to increased fragility. Buqi-Tongluo (BQTL) decoction, a traditional Chinese medicine (TCM) prescription, has yet to be fully evaluated for its potential in treating bone diseases such as osteoporosis. To investigate the mechanism by which BQTL decoction inhibits osteoclast differentiation in vitro and validate these findings through in vivo experiments. We employed MTS assays to assess the potential proliferative or toxic effects of BQTL on bone marrow macrophages (BMMs) at various concentrations. TRAcP experiments were conducted to examine BQTL's impact on osteoclast differentiation. RT-PCR and Western blot analyses were utilized to evaluate the relative expression levels of osteoclast-specific genes and proteins under BQTL stimulation. Finally, in vivo experiments were performed using an osteoporosis model to further validate the in vitro findings. This study revealed that BQTL suppressed receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and osteoclast resorption activity in vitro in a dose-dependent manner without observable cytotoxicity. The inhibitory effects of BQTL on osteoclast formation and function were attributed to the downregulation of NFATc1 and c-fos activity, primarily through attenuation of the MAPK, NF-κB, and Calcineurin signaling pathways. BQTL's inhibitory capacity was further examined in vivo using an ovariectomized (OVX) rat model, demonstrating a strong protective effect against bone loss. BQTL may serve as an effective therapeutic TCM for the treatment of postmenopausal osteoporosis and the alleviation of bone loss induced by estrogen deficiency and related conditions.
Animals
;
NFATC Transcription Factors/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Ovariectomy
;
Osteoclasts/metabolism*
;
Female
;
Osteogenesis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
NF-kappa B/genetics*
;
Osteoporosis/genetics*
;
Signal Transduction/drug effects*
;
Bone Resorption/genetics*
;
Cell Differentiation/drug effects*
;
Humans
;
RANK Ligand/metabolism*
;
Mitogen-Activated Protein Kinases/genetics*
;
Transcription Factors
8.Role of R-spondin 2 on osteogenic differentiation of bone marrow mesenchymal stem cells and bone metabolism in ovariectomized mice.
Xin LIU ; Bowen SHI ; Chengkuo CAI ; Haotian WANG ; Peng JIA
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(11):1399-1407
OBJECTIVE:
To investigate the effects of R-spondin 2 (Rspo2) on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and bone mineral content in ovariectomized mice.
METHODS:
BMSCs were extracted from the bone marrow of the long bones of 7 4-week-old female C57BL/6 mice using whole bone marrow culture and passaged. After the cell phenotype was identified by flow cytometry, the 3rd generation cells were co-cultured with 10, 20, 40, 80, and 100 nmol/L Rspo2. Then, the cell activity and proliferative capacity were determined by cell counting kit 8 (CCK-8), and the intervention concentration of Rspo2 was screened for the subsequent experiments. The osteogenic differentiation ability of BMSCs was detected by alkaline phosphatase (ALP) staining, and the mRNA levels of osteogenesis-related genes [RUNX family transcription factor 2 (Runx2), collagen type Ⅰ alpha 1 (Col1), osteocalcin (OCN)] were detected by real-time fluorescence quantitative PCR (RT-qPCR). In addition, 18 10-week-old female C57BL/6 mice were randomly divided into sham operation group (sham group), ovariectomy group (OVX group), and OVX+Rspo2-intervention group (OVX+Rspo2 group), with 6 mice in each group. The sham group only underwent bilateral back incision and suturing, while the other two groups established osteoporosis mouse models by bilateral ovarian castration. Then, the mice were given a weekly intraperitoneal Rspo2 (1 mg/kg) treatment in OVX+Rspo2 group and saline at the same dosage in sham group and OVX group. After 12 weeks of treatment, the body mass and uterus mass of the mice were weighed in the 3 groups to assess whether the OVX model was successfully prepared; the tibia bones were stained with HE and immunohistochemistry staining to observe the changes in tibial bone mass and the expression level of Runx2 protein in the bone tissues. Blood was collected to detect the expressions of bone metabolism markers [ALP, OCN, type Ⅰ procollagen amino-terminal peptide (PINP)] and bone resorption marker [β-collagen degradation product (β-CTX)] by ELISA assay. Micro-CT was used to detect the bone microstructure changes in the tibia, and three-dimensional histomorphometric analyses were performed to analyze the trabeculae thickness (Tb.Th), trabeculae number (Tb.N), trabeculae separation (Tb.Sp), and bone volume fraction (BV/TV).
RESULTS:
CCK-8 assay showed that Rspo2 concentrations below 80 nmol/L were not cytotoxic ( P>0.05), and the cell viability of 20 nmol/L Rspo2 group was significantly higher than that of the control group ( P<0.05). Based on the above results, 10, 20, and 40 nmol/L Rspo2 were selected for subsequent experiments. ALP staining showed that the positive cell area of each concentration of Rspo2 group was significantly larger than that of the control group ( P<0.05), with the highest showed in the 20 nmol/L Rspo2 group. The expression levels of the osteogenesis-related genes (Runx2, Col1, OCN) significantly increased, and the differences were significant between Rspo2 groups and control group ( P<0.05) except for Runx2 in the 40 nmol/L Rspo2 group. In animal experiments, all groups of mice survived until the completion of the experiment, and the results of the body mass and uterus mass after 12 weeks of treatment showed that the OVX model was successfully prepared. Histological and immunohistochemical staining showed that the sparseness and connectivity of bone trabecula and the expression of Runx2 in the OVX group were lower than those in the sham group, whereas they were reversed in the OVX+Rspo2 group after treatment with Rspo2, and the differences were significant ( P<0.05). ELISA assay showed that compared with the sham group, the serum bone metabolism markers in OVX group had an increase in ALP and a decrease in PINP ( P<0.05). After Rspo2 intervention, PINP expression significantly reversed and increased, with significant differences compared to the sham group and OVX group ( P<0.05). The bone resorption marker (β-CTX) was significantly higher in the OVX group than in the sham group ( P<0.05), and it was significantly decreased in the OVX+Rspo2 group when compared with the OVX group ( P<0.05). Compared with the sham group, Tb.Th, Tb.N, and BV/TV significantly decreased in the OVX group, while Tb.Sp significantly increased ( P<0.05); after Rspo2 intervention, all of the above indexes significantly improved in the OVX+Rspo2 group ( P<0.05) except Tb.Th.
CONCLUSION
Rspo2 promotes differentiation of BMSCs to osteoblasts, ameliorates osteoporosis due to estrogen deficiency, and promotes bone formation in mice.
Animals
;
Female
;
Ovariectomy
;
Mice
;
Cell Differentiation
;
Osteogenesis
;
Mice, Inbred C57BL
;
Mesenchymal Stem Cells/cytology*
;
Cells, Cultured
;
Thrombospondins/metabolism*
;
Bone Marrow Cells/metabolism*
;
Bone Density
;
Cell Proliferation
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Coculture Techniques
9.Transcriptomic analysis reveals "adipogenesis" in the uterosacral ligaments of postmenopausal women with recurrent pelvic organ prolapse.
Yanhua ZHOU ; Dayu YAN ; Xiulan ZHANG ; Xuhong LI ; Wenguang YAN ; Li JIANG
Journal of Central South University(Medical Sciences) 2024;49(11):1808-1820
OBJECTIVES:
Pelvic organ prolapse (POP) is a common condition in postmenopausal women, with an increasing prevalence due to aging. Some women experience POP recurrence after surgical treatment, significantly affecting their physical and mental health. The uterosacral ligament is a critical pelvic support structure. This study aims to investigate the molecular pathological changes in the uterosacral ligament of postmenopausal women with recurrent POP using transcriptomic analysis.
METHODS:
Transcriptomic data of uterosacral ligament tissues were obtained from the public dataset GSE28660, which includes samples from 4 postmenopausal women with recurrent POP, 4 with primary POP, and 4 without POP. Differentially expressed genes (DEGs) were identified between recurrent POP and both primary and non-POP groups. Further analysis included intersection analysis of DEGs, gene ontology enrichment, protein-protein interaction (PPI) network construction, gene set enrichment analysis (GSEA), single-sample GSEA, and xCell immune cell infiltration analysis to explore molecular pathological changes in recurrent POP. Additionally, histological and molecular differences in the uterosacral ligament were compared between simulated vaginal delivery (SVD) rat models with and without ovariectomy.
RESULTS:
Compared with primary POP and non-POP groups, recurrent POP exhibited activation of adipogenesis and inflammation-related pathways, while pathways related to muscle proliferation and contraction were downregulated in the uterosacral ligament. Nine key DEGs (ADIPOQ, FABP4, IL-6, LIPE, LPL, PCK1, PLIN1, PPARG, and CD36) were identified, with most enriched in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. These genes were significantly correlated with lipid accumulation, monocyte infiltration, and neutrophil infiltration in the uterosacral ligament. Urodynamic testing revealed that the bladder leak point pressure was significantly higher in ovariectomized SVD rats, both of which had higher values than the sham group. Masson staining showed pronounced adipogenesis in the uterosacral ligament of ovariectomized SVD rats, along with reduced collagen and muscle fibers compared to the sham and non-ovariectomized SVD groups. Furthermore, real-time RT-PCR confirmed significantly elevated expression of key DEGs, including ADIPOQ, IL-6, PCK1, and PLIN1, in the uterosacral ligaments of ovariectomized SVD rats.
CONCLUSIONS
Adipogenesis and inflammation in the uterosacral ligament may contribute to its reduced supportive function, potentially leading to recurrence POP in postmenopausal women.
Female
;
Humans
;
Ligaments/pathology*
;
Pelvic Organ Prolapse/metabolism*
;
Postmenopause
;
Animals
;
Rats
;
Adipogenesis/genetics*
;
Recurrence
;
Gene Expression Profiling
;
Transcriptome
;
Middle Aged
;
Ovariectomy
;
Protein Interaction Maps
;
Aged
;
Rats, Sprague-Dawley
;
Uterus
10.Serum estradiol levels decrease after oophorectomy in transmasculine individuals on testosterone therapy.
Sahil KUMAR ; Elise BERTIN ; Cormac O'DWYER ; Amir KHORRAMI ; Richard WASSERSUG ; Smita MUKHERJEE ; Neeraj MEHRA ; Marshall DAHL ; Krista GENOWAY ; Alexander G KAVANAGH
Asian Journal of Andrology 2023;25(3):309-313
Transmasculine individuals, considering whether to undergo total hysterectomy with bilateral salpingectomy, have the option to have a concomitant oophorectomy. While studies have evaluated hormone changes following testosterone therapy initiation, most of those patients have not undergone oophorectomy. Data are currently limited to support health outcomes regarding the decision to retain or remove the ovaries. We performed a retrospective chart review of transmasculine patients maintained on high-dose testosterone therapy at a single endocrine clinic in Vancouver, British Columbia, Canada. Twelve transmasculine individuals who underwent bilateral oophorectomy and had presurgical and postsurgical serum data were included. We identified 12 transmasculine subjects as controls, who were on testosterone therapy and did not undergo oophorectomy, but additionally matched to the first group by age, testosterone dosing regimen, and body mass index. There was a statistically significant decrease in the estradiol levels of case subjects postoophorectomy, when compared to presurgical estradiol levels (P = 0.02). There was no significant difference between baseline estradiol levels between control and case subjects; however, the difference in estradiol levels at follow-up measurements was significant (P = 0.03). Total testosterone levels did not differ between control and case subjects at baseline and follow-up (both P > 0.05). Our results demonstrate that oophorectomy further attenuates estradiol levels below what is achieved by high-dose exogenous testosterone alone. Correlated clinical outcomes, such as impacts on bone health, were not available. The clinical implications of oophorectomy versus ovarian retention on endocrinological and overall health outcomes are currently limited.
Female
;
Humans
;
Testosterone/therapeutic use*
;
Retrospective Studies
;
Ovariectomy
;
Hysterectomy/methods*
;
Estradiol

Result Analysis
Print
Save
E-mail