1.Chemical Constituents and Pharmacological Effect of Epimedium sagittatum: A Review
Lixin PEI ; Lin CHEN ; Nuo LI ; Mengyao ZHAO ; Haoyuan YANG ; Xiaoyu YANG ; Baoyu JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):282-290
Epimedium sagittatum is a perennial herb of Berberidaceae. Its leaves have a long history of medicinal use in China. This plant is widely used as a Chinese traditional medicine,with the main functions of tonifying kidney Yang,strengthening bones and muscles,and dispelling wind and dampness. It can be used for treating kidney Yang deficiency,impotence,spermatorrhea,flaccidity of bones and muscles,rheumatic arthralgia,numbness,and spasms. The chemical constituents of this plant include flavonoids,polysaccharides,lignans,and alkaloids. Flavonoids are the main active ingredients. These compounds show a wide range of biological activities,including cartilage repair,anti-aging,anti-fatigue,cough-relieving,blood glucose-lowering,and anti-tumor effects. Modern pharmacological research has shown that E. sagittatum has definite pharmacological effects on the reproductive system,respiratory system,nervous system,cardiovascular system,skeletal system,etc. It has remarkable effects of helping pregnancy,resisting osteoporosis,controlling diabetes,improving immunity,and inhibiting tumor. Under the background of advocating one health and Chinese medicine,E. sagittatum is widely used in health care products,serving as the main raw material of various products. It has great market potential and is a Chinese medicinal herb with great clinical application and research value. This paper reviews the main chemical constituents and pharmacological effects of E. sagittatum based on domestic and foreign reports, providing a theoretical basis for further study on E. sagittatum and its safe clinical application.
2.Chemical Constituents and Pharmacological Effect of Epimedium sagittatum: A Review
Lixin PEI ; Lin CHEN ; Nuo LI ; Mengyao ZHAO ; Haoyuan YANG ; Xiaoyu YANG ; Baoyu JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):282-290
Epimedium sagittatum is a perennial herb of Berberidaceae. Its leaves have a long history of medicinal use in China. This plant is widely used as a Chinese traditional medicine,with the main functions of tonifying kidney Yang,strengthening bones and muscles,and dispelling wind and dampness. It can be used for treating kidney Yang deficiency,impotence,spermatorrhea,flaccidity of bones and muscles,rheumatic arthralgia,numbness,and spasms. The chemical constituents of this plant include flavonoids,polysaccharides,lignans,and alkaloids. Flavonoids are the main active ingredients. These compounds show a wide range of biological activities,including cartilage repair,anti-aging,anti-fatigue,cough-relieving,blood glucose-lowering,and anti-tumor effects. Modern pharmacological research has shown that E. sagittatum has definite pharmacological effects on the reproductive system,respiratory system,nervous system,cardiovascular system,skeletal system,etc. It has remarkable effects of helping pregnancy,resisting osteoporosis,controlling diabetes,improving immunity,and inhibiting tumor. Under the background of advocating one health and Chinese medicine,E. sagittatum is widely used in health care products,serving as the main raw material of various products. It has great market potential and is a Chinese medicinal herb with great clinical application and research value. This paper reviews the main chemical constituents and pharmacological effects of E. sagittatum based on domestic and foreign reports, providing a theoretical basis for further study on E. sagittatum and its safe clinical application.
3.Long non-coding RNA PVT1 mediates bile acid-induced gastric intestinal metaplasia via a miR-34b-5p/HNF4α positive feedback loop.
Kexin LIN ; Nuo YAO ; Xingyu ZHAO ; Xiaodong QU ; Xuezhi LI ; Songbo LI ; Shiyue LUO ; Min CHEN ; Na WANG ; Yongquan SHI
Chinese Medical Journal 2025;138(18):2324-2335
BACKGROUND:
Bile acids (BAs) facilitate the progression of gastric intestinal metaplasia (GIM). Long non-coding RNAs (lncRNAs) dysregulation was observed along with the initiation of gastric cancer. However, how lncRNAs function in GIM remains unclear. This study aimed to explore the role and mechanism of lncRNA PVT1 in GIM, and provide a potential therapeutic target for GIM treatment.
METHODS:
We employed RNA sequencing (RNA-seq) to screen dysregulated lncRNAs in gastric epithelial cells after BA treatment. Bioinformatics analysis was conducted to reveal the regulatory mechanism. PVT1 expression was detected in 21 paired biopsies obtained under endoscopy. Overexpressed and knockdown cell models were established to explore gene functions in GIM. Molecular interactions were validated by dual-luciferase reporter assay, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (Ch-IP). The levels of relative molecular expression were detected in GIM tissues.
RESULTS:
We confirmed that lncRNA PVT1 was upregulated in BA-induced GIM model. PVT1 promoted the expression of intestinal markers such as CDX2 , KLF4 , and HNF4α . Bioinformatics analysis revealed that miR-34b-5p was a putative target of PVT1 . miR-34b-5p mimics increased CDX2 , KLF4 , and HNF4α levels. Restoration of miR-34b-5p decreased the pro-metaplastic effect of PVT1 . The interactions between PVT1 , miR-34b-5p, and the downstream target HNF4α were validated. Moreover, HNF4α could transcriptionally activated PVT1 , sustaining the GIM phenotype. Finally, the activation of the PVT1 /miR-34b-5p/ HNF4α loop was detected in GIM tissues.
CONCLUSIONS
BAs facilitate GIM partially via a PVT1/miR-34b-5p/HNF4α positive feedback loop. PVT1 may become a novel target for blocking the continuous development of GIM and preventing the initiation of gastric cancer in patients with bile reflux.
Humans
;
RNA, Long Noncoding/metabolism*
;
MicroRNAs/metabolism*
;
Hepatocyte Nuclear Factor 4/genetics*
;
Bile Acids and Salts
;
Kruppel-Like Factor 4
;
Metaplasia/metabolism*
4.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
5.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
6.Research progress and exploration of traditional Chinese medicine in treatment of sepsis-acute lung injury by inhibiting pyroptosis.
Wen-Yu WU ; Nuo-Ran LI ; Kai WANG ; Xin JIAO ; Wan-Ning LAN ; Yun-Sheng XU ; Lin WANG ; Jing-Nan LIN ; Rui CHEN ; Rui-Feng ZENG ; Jun LI
China Journal of Chinese Materia Medica 2025;50(16):4425-4436
Sepsis is a systemic inflammatory response caused by severe infection or trauma, and is one of the common causes of acute lung injury(ALI) and acute respiratory distress syndrome(ARDS). Sepsis-acute lung injury(SALI) is a critical clinical condition with high morbidity and mortality. Its pathogenesis is complex and not yet fully understood, and there is currently a lack of targeted and effective treatment options. Pyroptosis, a novel form of programmed cell death, plays a key role in the pathological process of SALI by activating inflammasomes and releasing inflammatory factors, making it a potential therapeutic target. In recent years, the role of traditional Chinese medicine(TCM) in regulating signaling pathways related to pyroptosis through multi-components and multi-targets has attracted increasing attention. TCM may intervene in pyroptosis by inhibiting the activation of NLRP3 inflammasomes and regulating the expression of Caspase family proteins, thus alleviating inflammatory damage in lung tissues. This paper systematically reviews the molecular regulatory network of pyroptosis in SALI and explores the potential mechanisms and research progress on TCM intervention in cellular pyroptosis. The aim is to provide new ideas and theoretical support for basic research and clinical treatment strategies of TCM in SALI.
Pyroptosis/drug effects*
;
Humans
;
Sepsis/genetics*
;
Acute Lung Injury/physiopathology*
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
7.Study on dental image segmentation and automatic root canal measurement based on multi-stage deep learning using cone beam computed tomography.
Ziqing CHEN ; Qi LIU ; Jialei WANG ; Nuo JI ; Yuhang GONG ; Bo GAO
Journal of Biomedical Engineering 2025;42(4):757-765
This study aims to develop a fully automated method for tooth segmentation and root canal measurement based on cone beam computed tomography (CBCT) images, providing objective, efficient, and accurate measurement results to guide and assist clinicians in root canal diagnosis grading, instrument selection, and preoperative planning. The method utilized Attention U-Net to recognize tooth descriptors, cropped regions of interest (ROIs) based on the center of mass of these descriptors, and applied an integrated deep learning method for segmentation. The segmentation results were mapped back to the original coordinates and position-corrected, followed by automatic measurement and visualization of root canal lengths and angles. The results indicated that the Dice coefficient for segmentation was 96.42%, the Jaccard coefficient was 93.11%, the Hausdorff Distance was 2.07 mm, and the average surface distance was 0.23 mm, all of which surpassed existing methods. The relative error of the root canal working length measurement was 3.15% (< 5%), the curvature angle error was 2.85 °, and the correct classification rate of the treatment difficulty coefficient was 90.48%. The proposed methods all achieved favorable results, which can provide an important reference for clinical application.
Cone-Beam Computed Tomography/methods*
;
Deep Learning
;
Humans
;
Dental Pulp Cavity/diagnostic imaging*
;
Image Processing, Computer-Assisted/methods*
8.Progress and challenges of functionalized bacterial encapsulation: A novel biotechnology for next-generation biotherapeutics.
Ying ZHANG ; Yuwei WU ; Xinyu ZHAO ; Qinghua YE ; Lulu CAO ; Ming LIU ; Bao GAO ; Qinya NIU ; Nuo CHEN ; Zixuan DUAN ; Yu DING ; Juan WANG ; Moutong CHEN ; Ying LI ; Qingping WU
Acta Pharmaceutica Sinica B 2025;15(10):5167-5191
The disturbance of the human microbiota influences the occurrence and progression of many diseases. Live therapeutic bacteria, with their genetic manipulability, anaerobic tendencies, and immunomodulatory properties, are emerging as promising therapeutic agents. However, their clinical applications face challenges in maintaining activity and achieving precise spatiotemporal release, particularly in the harsh gastrointestinal environment. This review highlights the innovative bacterial functionalized encapsulation strategies developed through advances in physicochemical and biological techniques. We comprehensively review how bacterial encapsulation strategies can be used to provide physical barriers and enhanced adhesion properties to live microorganisms, while introducing superior material properties to live bacteria. In addition, this review outlines how bacterial surface coating can facilitate targeted delivery and precise spatiotemporal release of live bacteria. Furthermore, it elucidates their potential applications for treating different diseases, along with critical perspectives on challenges in clinical translation. This review comprehensively analyzes the connection between functionalized bacterial encapsulation and innovative biomedical applications, providing a theoretical reference for the development of next-generation bacterial therapies.
9.GPSM2 is highly expressed in gastric cancer to affect patient prognosis by promoting tumor cell proliferation.
Xue SONG ; Yue CHEN ; Min ZHANG ; Nuo ZHANG ; Lugen ZUO ; Jing LI ; Zhijun GENG ; Xiaofeng ZHANG ; Yueyue WANG ; Lian WANG ; Jianguo HU
Journal of Southern Medical University 2025;45(2):229-238
OBJECTIVES:
To explore the association between GPSM2 expression level and gastric cancer progression and analyze the functional pathways and action mechanism of GPSM2.
METHODS:
We analyzed GPSM2 expression levels in gastric cancer tumors based on data from the GEPIA database and the clinical data of 109 patients. Public databases enrichment analysis were used to assess the impact of GPSM2 expression level on survival outcomes and the functional pathways and action mechanism of GPSM2. We further observed the effects of GPSM2 knockdown and overexpression on proliferation, migration and apoptosis of MGC803 cells using CCK-8 assay, colony formation assay, flow cytometry and immunoblotting and on the growth of MGC803 cell xenografts in nude mice.
RESULTS:
Bioinformatic analysis and immunohistochemical staining of the clinical specimens both revealed high GPSM2 expressions in gastric cancer (P<0.01). A high GPSM2 expression was significantly correlated with T3-4 stages, N2-3 stages, a carcinoembryonic antigen (CEA) level ≥5 μg/L, and a carbohydrate antigen (CA) 19-9 level ≥37 kU/L (P<0.05). Cox regression analysis identified high GPSM2 expression as an independent risk factor affecting 5-year survival of the patients (P<0.05). Gene ontology (GO) analysis suggested that GPSM2 was involved in cell cycle regulation. In MGC803 cells, GPSM2 overexpression significantly promoted cell proliferation and G1/S transition and xenograft growth in nude mice. KEGG pathway enrichment analysis indicated that GPSM2 executed its biological functions by regulating the p53 signaling pathway, which was confirmed by the results of immunoblotting experiments showing suppression of p53 signaling pathway activity in GPSM2-over expressing MGC803 cells.
CONCLUSIONS
GPSM2 is highly expressed in gastric cancer to affect patient prognosis by promoting tumor cell proliferation and G1/S transition possibly via inhibiting the p53 pathway.
Stomach Neoplasms/metabolism*
;
Humans
;
Cell Proliferation
;
Prognosis
;
Animals
;
Mice, Nude
;
Cell Line, Tumor
;
Mice
;
Apoptosis
;
Tumor Suppressor Protein p53/metabolism*
;
Cell Movement
10. Effect of Qingshen granules on miR-23b and PINKl/Parkin pathway in rat NRK-52E cell transdifferentiation model
Hua JIN ; Lei ZHANG ; Yi-Ping WANG ; Hua JIN ; Ye-Qing ZHANG ; Qin HU ; Nuo CHEN ; Yan-Quan HAN
Chinese Pharmacological Bulletin 2024;40(1):162-170
Aim To investigate the targeting mechanism of miR-23b on PINKl/Parkin pathway in transdifferentiation of NRK-52E cellsinduced by TGF-β1, and to elucidate the intervention mechanism of Qingshen granules drug-containing serum on NRK-52E cell transdifferentiation. Methods Ultra-high performance liquid chromatography ( UPLC ) fingerprinting method was used to analyze Qingshen granules. The NRK-52E transdifferentiation model induced by TGF-β1 was constructed. The NRK-52E cells were divided into simulated no-load control group, miR-23b-5p simulated group, inhibitor no-load control group, and miR-23b-5p inhibitor group, after transfection with siRNA, and the effect of miR-23b-5p on PINK1 expression was ob-served. The NRK-52E cells were then divided into normal group, TGF-(31 group, Qingshen granule group, miR-23 b-mimic group, miR-23 b-mimic group, and miR-23b-mimic + Qingshen granule group. Western blot was used to detect the expression of Pinkl, Parkin, LC3 n, Beclin-1, P62 and a-SMA proteins, and RT- PCR was used to detect the expression of miR-23 b-5p, Pinkl, Parkin, Beclin-1 and a-SMA mRNA in NRK- 52E cells. Dual-Luciferase Reporter gene experiment was used to detect the targeting relationship between miR-23b-5p and PINKL Results UPLC fingerprinting method found 11 active components in Qingshen granules. After overexpression of miR-23b-5p, the expression of PINkl mRNA significantly increased (P < 0. 05). And after silencing of miR-23 b-5 p expression, the expression of PINkl mRNA also significantly decreased (P < 0. 05 ). Dual-Luciferase Reporter Assay showed that Rno-miR-23b-5p could significantly down- regulate the luciferase activity of Rno-PINKl-WT (P < 0. 05 ), but could not down-regulate the luciferase activity of mutant Rno-PINKl -mut ( P > 0. 05 ). The experimental results showed that the expressions of miR- 23b-5p, Pinkl, Parkin, Beclin-1, LC3 II and LC3 II/ I ratio in TGF-β1 group were significantly lower than those in normal group, but the expressions of P62 and a-SMA were significantly higher than those in normal group ( P <0.05). The expressions of miR-23 b-5 p, Pinkl, Parkin, Beclin-1, LC3 II and LC3 11/ I ratio in Qingshen granule group and miR-23 b-mimic group were significantly higher than those in TGF-β1 group, and the expressions of P62 and a-SMA were significantly lower than those in TGF-β1 group (P < 0. 05 ). The performance of miR-23 b-mimic + Qingshen granule group was better than that of miR-23 b-mimic group (P < 0. 05 ). Conclusions Qingshen granules can up- regulate the expression of miR-23b-5p in NRK-52E cellsand inhibit the transdifferentiation process of NRK- 52E cells by enhancing the mitochondrial autophagy activity mediated by PINKl/Parkin pathway.

Result Analysis
Print
Save
E-mail