1.Research progress on copy number alterations in pediatric B-cell acute lymphoblastic leukemia.
Chinese Journal of Contemporary Pediatrics 2025;27(6):746-752
Copy number alteration (CNA) is a significant genetic change in pediatric B-cell acute lymphoblastic leukemia (B-ALL), with CDKN2A/B deletions, PAX5 deletions, and IKZF1 deletions being the most common. Recent studies have increasingly highlighted the potential prognostic significance of these gene deletions and multiple co-deletions in pediatric B-ALL. This paper reviews the main detection methods for CNA, as well as the prognostic characteristics and treatment approaches for common CNA in pediatric B-ALL.
Humans
;
DNA Copy Number Variations
;
Child
;
PAX5 Transcription Factor/genetics*
;
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Cyclin-Dependent Kinase Inhibitor p15/genetics*
;
Ikaros Transcription Factor/genetics*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Gene Deletion
;
Cyclin-Dependent Kinase Inhibitor p16/genetics*
;
Prognosis
2.Prognostic Value of CDKN2A Copy Number Deletion in Patients with Diffuse Large B-Cell Lymphoma.
Wei-Yuan MA ; Le-Tian SHAO ; Wen-Xin TIAN ; Sha LIU ; Yan LI
Journal of Experimental Hematology 2025;33(2):379-386
OBJECTIVE:
To investigate the relationship between CDKN2A copy number deletion and clinical features of patients with diffuse large B-cell lymphoma (DLBCL) and its prognostic value.
METHODS:
155 newly diagnosed DLBCL patients with complete clinical data in the Department of Hematology of People's Hospital of Xinjiang Uygur Autonomous Region from March 2009 to March 2022 were included, formalin-fixed paraffin-embedded tumor tissues were obtained and DNA was extracted from them, and next-generation sequencing technology was applied to target sequencing including 475 lymphoma-related genes, the relationship between CDKN2A copy number deletion and clinical features, high-frequency mutated genes and overall survival (OS) of DLBCL patients were analyzed.
RESULTS:
CDKN2A copy number deletion was present in 12.9% (20/155) of 155 DLBCL patients, grouped according to the presence or absence of copy number deletion of CDKN2A, and a higher proportion of patients with IPI≥3 were found in the CDKN2A copy number deletion group compared to the group with no CDKN2A copy number deletion (80% vs 51.5%, P =0.015) and were more likely to have bulky disease (20% vs 5.2%, P =0.037). Survival analysis showed that the 5-year OS of patients in the CDKN2A copy number deletion group was significantly lower than that of the non-deletion group (51.3% vs 69.2%, P =0.047). Multivariate Cox analysis showed that IPI score≥3 (P =0.007), TP53 mutation (P =0.009), and CDKN2A copy number deletion (P =0.04) were independent risk factors affecting the OS of DLBCL patients.
CONCLUSION
CDKN2A copy number deletion is an independent risk factor for OS in DLBCL, and accurate identification of CDKN2A copy number deletion can predict the prognosis of DLBCL patients.
Humans
;
Lymphoma, Large B-Cell, Diffuse/genetics*
;
Prognosis
;
Cyclin-Dependent Kinase Inhibitor p16/genetics*
;
DNA Copy Number Variations
;
Female
;
Male
;
Middle Aged
;
Gene Deletion
;
Adult
;
Aged
3.Peripheral blood mitochondrial DNA copy number as a predictor of steatotic liver disease development: insights from epidemiological and experimental studies.
Genki MIZUNO ; Atsushi TESHIGAWARA ; Hiroya YAMADA ; Eiji MUNETSUNA ; Yoshiki TSUBOI ; Yuji HATTORI ; Mirai YAMAZAKI ; Yoshitaka ANDO ; Itsuki KAGEYAMA ; Takuya WAKASUGI ; Naohiro ICHINO ; Keisuke OSAKABE ; Keiko SUGIMOTO ; Ryosuke FUJII ; Hiroaki ISHIKAWA ; Nobutaka OHGAMI ; Koji OHASHI ; Koji SUZUKI
Environmental Health and Preventive Medicine 2025;30():42-42
BACKGROUND:
Mitochondria, which harbor their own genome (mtDNA), have attracted attention due to the potential of mtDNA copy number (mtDNA-CN) as an indicator of mitochondrial dysfunction. Although mtDNA-CN has been proposed as a simple and accessible biomarker for metabolic disorders such as metabolic dysfunction-associated steatotic liver disease, the underlying mechanisms and the causal relationship remain insufficiently elucidated. In this investigation, we combined longitudinal epidemiological data, animal studies, and in vitro assays to elucidate the potential causal relationship between reduced mtDNA-CN and the development of steatotic liver disease (SLD).
METHODS:
We conducted a longitudinal study using data from a health examination cohort initiated in 1981 in Yakumo, Hokkaido, Japan. Data from examinations performed in 2015 and 2022 were analyzed, focusing on 76 subjects without SLD at baseline (2015) to assess the association between baseline mtDNA-CN and subsequent risk of SLD development. In addition, 28-day-old SD rats were fed ad libitum on a 45% high-fat diet and dissected at 2 and 8 weeks of age. Blood and liver mtDNA-CN were measured and compared at each feeding period. Additionally, in vitro experiments were performed using HepG2 cells treated with mitochondrial function inhibitors to induce mtDNA-CN depletion and to examine its impact on intracellular lipid accumulation.
RESULTS:
Epidemiological analysis showed that the subjects with low mtDNA-CN had a significantly higher odds ratio for developing SLD compared to high (odds ratio [95% confidence interval]: 4.93 [1.08-22.50]). Analysis of the animal model showed that 8 weeks of high-fat diet led to the development of fatty liver and a significant decrease in mtDNA-CN. A further 2 weeks of high-fat diet consumption resulted in a significant decrease in hepatic mtDNA-CN, despite the absence of fatty liver development, and a similar trend was observed for blood. Complementary in vitro experiments revealed that pharmacologically induced mitochondrial dysfunction led to a significant reduction in mtDNA-CN and was associated with increases in intracellular lipid accumulation in HepG2 cells.
CONCLUSIONS
Our findings suggest that reduced mtDNA-CN may contribute causally to SLD development and could serve as a convenient, noninvasive biomarker for early detection and risk assessment.
Animals
;
DNA, Mitochondrial/genetics*
;
Humans
;
Male
;
DNA Copy Number Variations
;
Female
;
Fatty Liver/blood*
;
Rats
;
Middle Aged
;
Longitudinal Studies
;
Rats, Sprague-Dawley
;
Adult
;
Japan/epidemiology*
;
Aged
;
Biomarkers/blood*
;
Hep G2 Cells
;
Diet, High-Fat/adverse effects*
4.Deciphering odontogenic myxoma: the role of copy number variations as diagnostic signatures.
Aobo ZHANG ; Jianyun ZHANG ; Xuefen LI ; Xia ZHOU ; Yanrui FENG ; Lijing ZHU ; Heyu ZHANG ; Lisha SUN ; Tiejun LI
Journal of Zhejiang University. Science. B 2024;25(12):1071-1082
In light of the lack of reliable molecular markers for odontogenic myxoma (OM), the detection of copy number variation (CNV) may present a more objective method for assessing ambiguous cases. In this study, we employed multiregional microdissection sequencing to integrate morphological features with genomic profiling. This allowed us to reveal the CNV profiles of OM and compare them with dental papilla (DP), dental follicle (DF), and odontogenic fibroma (OF) tissues. We identified a distinct and robustly consistent CNV pattern in 93.75% (30/32) of OM cases, characterized by CNV gain events in chromosomes 4, 5, 8, 10, 12, 16, 17, 20, and 21. This pattern significantly differed from the CNV patterns observed in DP, DF, and OF. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated potential links between this CNV patterns and the calcium signaling pathway and salivary secretion, while Gene Ontology (GO) term analysis implicated CNV patterns in tumor adhesion, tooth development, and cell proliferation. Comprehensive CNV analysis accurately identified a case that was initially disputable between OF and OM as OM. Our findings provide a reliable diagnostic clue and fresh insights into the molecular biological mechanism underlying OM.
Humans
;
DNA Copy Number Variations
;
Odontogenic Tumors/diagnosis*
;
Myxoma/genetics*
;
Female
;
Male
;
Adult
;
Adolescent
;
Middle Aged
;
Dental Papilla
;
Young Adult
;
Fibroma/genetics*
;
Dental Sac
;
Child
5.Benchmark Dose Assessment for Coke Oven Emissions-Induced Mitochondrial DNA Copy Number Damage Effects.
Zhao Fan YAN ; Zhi Guang GU ; Ya Hui FAN ; Xin Ling LI ; Ze Ming NIU ; Xiao Ran DUAN ; Ali Manthar MALLAH ; Qiao ZHANG ; Yong Li YANG ; Wu YAO ; Wei WANG
Biomedical and Environmental Sciences 2023;36(6):490-500
OBJECTIVE:
The study aimed to estimate the benchmark dose (BMD) of coke oven emissions (COEs) exposure based on mitochondrial damage with the mitochondrial DNA copy number (mtDNAcn) as a biomarker.
METHODS:
A total of 782 subjects were recruited, including 238 controls and 544 exposed workers. The mtDNAcn of peripheral leukocytes was detected through the real-time fluorescence-based quantitative polymerase chain reaction. Three BMD approaches were used to calculate the BMD of COEs exposure based on the mitochondrial damage and its 95% confidence lower limit (BMDL).
RESULTS:
The mtDNAcn of the exposure group was lower than that of the control group (0.60 ± 0.29 vs. 1.03 ± 0.31; P < 0.001). A dose-response relationship was shown between the mtDNAcn damage and COEs. Using the Benchmark Dose Software, the occupational exposure limits (OELs) for COEs exposure in males was 0.00190 mg/m 3. The OELs for COEs exposure using the BBMD were 0.00170 mg/m 3 for the total population, 0.00158 mg/m 3 for males, and 0.00174 mg/m 3 for females. In possible risk obtained from animal studies (PROAST), the OELs of the total population, males, and females were 0.00184, 0.00178, and 0.00192 mg/m 3, respectively.
CONCLUSION
Based on our conservative estimate, the BMDL of mitochondrial damage caused by COEs is 0.002 mg/m 3. This value will provide a benchmark for determining possible OELs.
Male
;
Female
;
Animals
;
Coke
;
Polycyclic Aromatic Hydrocarbons
;
DNA Copy Number Variations
;
Benchmarking
;
Occupational Exposure/analysis*
;
DNA, Mitochondrial/genetics*
;
DNA Damage
6.Clinical characteristics and genetic variant analysis of a child with Snijders Blok-Campeau syndrome.
Yuke LI ; Xiaona WANG ; Mengyuan LIU ; Yang GAO ; Baiyun CHEN ; Daoqi MEI ; Huichun ZHANG ; Chao GAO
Chinese Journal of Medical Genetics 2023;40(4):402-407
OBJECTIVE:
To analyze the clinical phenotype and genetic variant of a child with Snijders Blok-Campeau syndrome (SBCS).
METHODS:
A child who was diagnosed with SBCS in June 2017 at Henan Children's Hospital was selected as the study subject. Clinical data of the child was collected. Peripheral blood samples of the child and his parents were collected and the extraction of genomic DNA, which was subjected to trio-whole exome sequencing (trio-WES) and genome copy number variation (CNV) analysis. Candidate variant was verified by Sanger sequencing of his pedigree members.
RESULTS:
The main clinical manifestations of the child have included language delay, intellectual impairment and motor development delay, which were accompanied with facial dysmorphisms (broad forehead, inverted triangular face, sparse eyebrows, widely spaced eyes, narrow palpebral fissures, broad nose bridge, midface hypoplasia, thin upper lip, pointed jaw, low-set ears and posteriorly rotated ears). Trio-WES and Sanger sequencing revealed that the child has harbored a heterozygous splicing variant of the CHD3 gene, namely c.4073-2A>G, for which both of his parents were of wild-type. No pathogenic variant was identified by CNV testing.
CONCLUSION
The c.4073-2A>G splicing variant of the CHD3 gene probably underlay the SBCS in this patient.
DNA Copy Number Variations
;
Heterozygote
;
Pedigree
;
Phenotype
;
RNA Splicing
;
Mutation
7.Follow-up of fetuses with de novo copy number variations of unknown significance detected by chromosomal microarray analysis.
Leilei GU ; Wei LIU ; Chunxiang ZHOU ; Peixuan CAO ; Xiangyu ZHU ; Jie LI
Chinese Journal of Medical Genetics 2023;40(4):442-445
OBJECTIVE:
To analyze the prognosis of fetuses identified with de novo variants of unknown significance (VOUS) by chromosome microarray analysis (CMA).
METHODS:
A total of 6 826 fetuses who underwent prenatal CMA detection at the Prenatal Diagnosis Center of Drum Tower Hospital from July 2017 to December 2021 were selected as the study subjects. The results of prenatal diagnosis, and outcome of fetuses identified with VOUS of de novo origin were followed up.
RESULTS:
Among the 6 826 fetuses, 506 have carried VOUS, of which 237 were detected for the parent-of-origin and 24 were found to be de novo. Among the latters, 20 were followed up for 4 to 24 months. Four couples had opted elective abortion, 4 had developed clinical phenotypes after birth, and 12 were normal.
CONCLUSION
Fetuses with VOUS should be continuously follow-up, in particular those carrying de novo VOUS, in order to clarify their clinical significance.
Pregnancy
;
Female
;
Humans
;
DNA Copy Number Variations
;
Follow-Up Studies
;
Prenatal Diagnosis/methods*
;
Chromosomes
;
Microarray Analysis/methods*
;
Fetus
;
Chromosome Aberrations
8.Analysis of genetic etiology and related factors in 1 065 women with spontaneous abortions.
Hu DING ; Honglei DUAN ; Xiangyu ZHU ; Wei LIU ; Leilei GU ; Huijun LI ; Zihan JIANG ; Jie LI
Chinese Journal of Medical Genetics 2023;40(4):446-451
OBJECTIVE:
To explore the genetic etiology and related factors in 1 065 women with spontaneous abortions.
METHODS:
All patients have presented at the Center of Prenatal Diagnosis of Nanjing Drum Tower Hospital from January 2018 to December 2021. Chorionic villi and fetal skin samples were collected, and the genomic DNA was assayed by chromosomal microarray analysis (CMA). For 10 couples with recurrent spontaneous abortions but normal CMA results for abortive tissues, non-in vitro fertilization-embryo transfer (IVF-ET) pregnancies and no previous history of live births and no structural abnormalities of the uterus, peripheral venous blood samples were collected. Genomic DNA was subjected to trio-whole exome sequencing (trio-WES). Candidate variants were verified by Sanger sequencing and bioinformatics analysis. Multifactorial unconditional logistic regression analysis was carried out to analyze the factors that may affect chromosomal abnormality in spontaneous abortions, such as the age of the couple, number of previous spontaneous abortions, IVF-ET pregnancy and history of live birth. The incidence of chromosomal aneuploidies in spontaneous abortions during the first trimester was compared in young or advanced-aged patients by chi-square test for liner trend.
RESULTS:
Among the 1 065 spontaneous abortion patients, 570 cases (53.5%) of chromosomal abnormalities were detected in spontaneous abortion tissues, which included 489 cases (45.9%) of chromosomal aneuploidies and 36 cases (3.4%) of pathogenic/likely pathogenic copy number variations (CNVs). Trio-WES results have revealed one homozygote variant and one compound heterozygote variants in two pedigrees, both of which were inherited from the parents. One likely pathogenic variant was detected in the patient from two pedigrees. Multifactorial unconditional Logistic regression analysis suggested that age of patient was an independent risk factor of chromosome abnormalities (OR = 1.122, 95%CI: 1.069-1.177, P < 0.001), the number of previous abortions and IVF-ET pregnancy were independent protective factors for chromosomal abnormalities (OR = 0.791, 0.648; 95%CI: 0.682-0.916, 0.500-0.840; P = 0.002, 0.001), whilst the age of husband and history of live birth were not (P > 0.05). The incidence of aneuploidies in the abortive tissues has decreased with the number of previous spontaneous abortions in young patients (χ² = 18.051, P < 0.001), but was not significantly correlated with the number of previous spontaneous abortions in advanced-aged patients with spontaneous abortions (P > 0.05).
CONCLUSION
Chromosomal aneuploidy is the main genetic factor for spontaneous abortion, though CNVs and genetic variants may also underlie its genetic etiology. The age of patients, number of previous abortions and IVF-ET pregnancy are closely associated with chromosome abnormalities in abortive tissues.
Pregnancy
;
Humans
;
Female
;
Aged
;
Abortion, Spontaneous/genetics*
;
DNA Copy Number Variations
;
Chromosome Aberrations
;
Chromosome Disorders/genetics*
;
Aneuploidy
;
Abortion, Habitual/genetics*
9.Genetic analysis of a Chinese pedigree with 18q21.2-q22.3 duplication and deletion in two offspring respectively resulting from a maternal intrachromosomal insertion.
Jiahong ZHOU ; Pan ZHOU ; Zhiyu LYU ; Hui ZHANG ; Qing LUO ; Lan YUAN ; Yang CHENG ; Xia WEN ; Jinbo LIU
Chinese Journal of Medical Genetics 2023;40(4):483-489
OBJECTIVE:
To provide prenatal diagnosis, pedigree analysis and genetic counseling for a pregnant woman who had given birth to a child featuring global developmental delay.
METHODS:
A pregnant woman who underwent prenatal diagnosis at the Affiliated Hospital of Southwest Medical University in August 2021 was selected as the study subject. Peripheral blood samples were collected from the woman, her husband and child, in addition with amniotic fluid sample during mid-pregnancy. Genetic variants were detected by G-banded karyotyping analysis and copy number variation sequencing (CNV-seq). Pathogenicity of the variant was predicted based on the guidelines from the American College of Medical Genetics and Genomics (ACMG). Candidate variant was traced in the pedigree to assess the recurrence risk.
RESULTS:
The karyotypes of the pregnant woman, her fetus, and affected child were 46,XX,ins(18)(p11.2q21q22), 46,X?,rec(18)dup(18)(q21q22)ins(18)(p11.2q21q22)mat and 46,XY,rec(18)del(18)(q21q22)ins(18)(p11.2q21q22)mat, respectively. Her husband was found to have a normal karyotype. CNV-seq has revealed a 19.73 Mb duplication at 18q21.2-q22.3 in the fetus and a 19.77 Mb deletion at 18q21.2-q22.3 in her child. The duplication and deletion fragments were identical to the insertional fragment in the pregnant woman. Based on the ACMG guidelines, the duplication and deletion fragments were both predicted to be pathogenic.
CONCLUSION
The intrachromosomal insertion of 18q21.2-q22.3 carried by the pregnant woman had probably given rise to the 18q21.2-q22.3 duplication and deletion in the two offspring. Above finding has provided a basis for genetic counseling for this pedigree.
Child
;
Female
;
Humans
;
Pregnancy
;
DNA Copy Number Variations
;
East Asian People
;
Pedigree
;
Prenatal Diagnosis/methods*
;
Chromosomes, Human, Pair 18/genetics*
;
Male
;
Fetus
;
INDEL Mutation
10.Prenatal genetic analysis of a fetus with Miller-Dieker syndrome.
Fengyang WANG ; Na QI ; Tao WANG ; Yue GAO ; Dong WU ; Mengting ZHANG ; Ke YANG ; Huijuan PENG ; Xingxing LEI ; Shixiu LIAO
Chinese Journal of Medical Genetics 2023;40(4):505-511
OBJECTIVE:
To explore the genetic basis for fetus with bilateral lateral ventriculomegaly.
METHODS:
Fetus umbilical cord blood and peripheral blood samples of its parents were collected. The fetus was subjected to chromosomal karyotyping, whilst the fetus and its parents were subjected to array comparative genomic hybridization (aCGH). The candidate copy number variation (CNV) were verified by qPCR, Application goldeneye DNA identification system was used to confirm the parental relationship.
RESULTS:
The fetus was found to have a normal karyotype. aCGH analysis indicated that it has carried a 1.16 Mb deletion at 17p13.3, which partially overlapped with the critical region of Miller-Dieker syndrome (MDS), in addition with a 1.33 Mb deletion at 17p12 region, which is associated with hereditary stress-susceptible peripheral neuropathy (HNPP). Its mother was also found to harbor the 1.33 Mb deletion at 17p12. qPCR analysis confirmed that the expression levels of genes from the 17p13.3 and 17p12 regions were about the half of that in the normal control, as well as the maternal peripheral blood sample. Parental relationship was confirmed between the fetus and its parents. Following genetic counseling, the parents has chosen to continue with the pregnancy.
CONCLUSION
The fetus was diagnosed with Miller-Dieker syndrome due to the de novo deletion at 17p13.3. Ventriculomegaly may be an important indicator for prenatal ultrasonography in fetuses with MDS.
Pregnancy
;
Female
;
Humans
;
Classical Lissencephalies and Subcortical Band Heterotopias
;
Comparative Genomic Hybridization
;
DNA Copy Number Variations
;
Fetus
;
Hydrocephalus
;
Prenatal Diagnosis
;
Chromosome Deletion

Result Analysis
Print
Save
E-mail