1.Association between the Non-Fasting Triglyceride-Glucose Index and Hyperglycemia in pregnancy during the Third Trimester in High Altitudes
Qingqing WANG ; Hongying HOU ; Ma NI ; Yating LIANG ; Xiaoyu CHEN ; WA Zhuoga DA ; Qiang LIU ; Zhenyan HAN
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(5):861-871
ObjectiveTo investigate the relationship between the non-fasting triglyceride and glucose (TyG) index and hyperglycemia in pregnancy during the third trimester in high altitudes. MethodsThis study selected clinical and laboratory data of 774 Tibetan singleton pregnant women who delivered at Chaya People's Hospital of Qamdo city in Xizang autonomous region, from January 2023 to April 2025. The non-fasting TyG index was calculated from non-fasting triglyceride (TG) and random plasma glucose (PG). Based on the tertiles of the non-fasting TyG index values, the individuals were split into three groups (corresponding to non-fasting TyG index of 8.89 and 9.21, respectively). The baseline clinical characteristics, lipid levels and the occurrence of developing hyperglycemia in pregnancy were compared among the three groups. Statistical analyses were performed using ANOVA, Kruskal-Wallis H test, Chi-square test, or Fisher exact test and the relationship between the non-fasting TyG index and hyperglycemia in pregnancy were examined using multivariate logistic regression models and curve fitting. ResultsA total of 774 Tibetan singleton pregnant women were included, with a average age of 27.3 ± 6.1 years, a pre-delivery body mass index (Pre-BMI) of (25.2±2.3)kg/m2 , a proportion of 26.7% (207/774) primigravid women, the mean non-fasting TyG index was 9.1 ± 0.4。Thirty pregnant women were diagnosed with hyperglycemia in pregnancy, with a detection rate of 3.9% (30/774). Statistically significant differences in serum total cholesterol (TC), TG, low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels were identified when comparing different non-fasting TyG groups (all P values <0.05). Subsequent trend test analysis indicated that the levels of TC, TG, LDL-C, and PG gradually increased with elevated the non-fasting TyG index ( Ftrend TC=95.61, P<0.001; Ftrend TG=1 051.91, P<0.001; Ftrend LDL-C = 97.20, P < 0.001; Ftrend TG=195.20; P<0.001). After adjustment for maternal age, pre-delivery BMI, altitude, TC, LDL-C, and HDL-C, multivariate Logistic regression models revealed independent positive associations between non-fasting TyG index and hyperglycemia in pregnancy (Model 1: OR=2.72, 95% CI: 1.13-6.53, P=0.026; Model 2: OR=2.56, 95% CI: 1.01-6.50, P=0.048; Model 3: OR=2.72, 95% CI: 1.06-6.97, P=0.037; Model 4: OR=4.02, 95% CI: 1.42-11.40, P=0.009) and the incident of hyperglycemia in pregnancy showed an increasing tendency as increasing with the non-fasting TyG index, however, this association did not statistical significance (P trend >0.05). Curve fitting by restricted cubic splines (RCS) were used to assess linearity between non-fasting TyG and hyperglycemia in pregnancy, and there was a linear dose-response relationship between non-fasting TyG and hyperglycemia in pregnancy (P for non-linear = 0.515). ConclusionNon-fasting TyG index in the third trimester is a risk factor for hyperglycemia in pregnancy among the Tibetan singleton pregnant women at high altitudes and there was a possible linear dose-response relationship between the non-fasting TyG index and hyperglycemia in pregnancy.
2.Effect of moxibustion at "Shenque" (CV8) on the expression of BDNF and c-fos in the urinary control brain regions of rats with neurogenic bladder after spinal cord injury.
Han YU ; Yuanbo FU ; Huilin LIU ; Yuzhuo ZHANG ; Yutong NI ; Qingdai LI ; Yi XU
Chinese Acupuncture & Moxibustion 2025;45(5):638-645
OBJECTIVE:
To observe the effects of moxibustion at "Shenque" (CV8) on urodynamics and the expression of brain-derived neurotrophic factor (BDNF) and immediate early gene (c-fos) in pontine micturition center (PMC), periaqueductal gray (PAG), medial prefrontal cortex (mPFC) of neurogenic bladder (NB) rats after spinal cord injury.
METHODS:
Twenty-four SPF female SD rats were randomly divided into a sham-operation group (6 rats) and a modeling group (18 rats). In the modeling group, T9 complete spinal cord transection method was used to establish a neurogenic detrusor overactivity model, and the 12 rats with successful modeling were randomized into a model group and a moxibustion group, with 6 rats in each group. The rats in the moxibustion group were treated with ginger/salt-insulated moxibustion at "Shenque" (CV8), and 4 consecutive moxa cones were delivered in one intervention. Moxibustion was operated once daily and for 14 days. After intervention completion, the urodynamic indexes of rats in each group were detected. Fluorescence quantitative PCR was used to detect the mRNA expression of BDNF and c-fos in PMC, PAG and mPFC in rats. Western blot was used to detect the protein expression of BDNF and c-fos in PMC, PAG and mPFC.
RESULTS:
The rats in the sham-operation group did not show phasic detrusor contraction during bladder filling. Compared with the model group, the frequency and amplitude of the phasic detrusor contraction were reduced 5 min before urine leakage in the rats of the moxibustion group (P<0.05), and the duration of the first phasic detrusor contraction during bladder filling was prolonged (P<0.05). Compared with the sham-operation group, the mRNA and protein expression of BDNF and c-fos in PMC, PAG and mPFC increased in the model group (P<0.05). Compared with the model group, the mRNA and protein expression of BDNF and c-fos in PMC, PAG and mPFC decreased in the moxibustion group (P<0.05).
CONCLUSION
Moxibustion at "Shenque" (CV8) can improve the phasic contraction during bladder filling in NB rats after spinal cord injury, possibly by down-regulating the mRNA and protein expression of BDNF and c-fos in PMC, PAG, and mPFC.
Animals
;
Moxibustion
;
Female
;
Rats
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Rats, Sprague-Dawley
;
Acupuncture Points
;
Spinal Cord Injuries/metabolism*
;
Urinary Bladder, Neurogenic/etiology*
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Humans
;
Urinary Bladder/physiopathology*
;
Brain/metabolism*
;
Urination
3.Brain injury biomarkers and applications in neurological diseases.
Han ZHANG ; Jing WANG ; Yang QU ; Yi YANG ; Zhen-Ni GUO
Chinese Medical Journal 2025;138(1):5-14
Neurological diseases are a major health concern, and brain injury is a typical pathological process in various neurological disorders. Different biomarkers in the blood or the cerebrospinal fluid are associated with specific physiological and pathological processes. They are vital in identifying, diagnosing, and treating brain injuries. In this review, we described biomarkers for neuronal cell body injury (neuron-specific enolase, ubiquitin C-terminal hydrolase-L1, αII-spectrin), axonal injury (neurofilament proteins, tau), astrocyte injury (S100β, glial fibrillary acidic protein), demyelination (myelin basic protein), autoantibodies, and other emerging biomarkers (extracellular vesicles, microRNAs). We aimed to summarize the applications of these biomarkers and their related interests and limits in the diagnosis and prognosis for neurological diseases, including traumatic brain injury, status epilepticus, stroke, Alzheimer's disease, and infection. In addition, a reasonable outlook for brain injury biomarkers as ideal detection tools for neurological diseases is presented.
Humans
;
Biomarkers/cerebrospinal fluid*
;
Nervous System Diseases/diagnosis*
;
Brain Injuries/metabolism*
;
Phosphopyruvate Hydratase/cerebrospinal fluid*
;
Glial Fibrillary Acidic Protein/blood*
;
S100 Calcium Binding Protein beta Subunit/blood*
;
tau Proteins/cerebrospinal fluid*
;
Ubiquitin Thiolesterase/blood*
;
Myelin Basic Protein/cerebrospinal fluid*
;
Neurofilament Proteins/blood*
;
MicroRNAs/blood*
;
Brain Injuries, Traumatic/metabolism*
4.Inflammatory disorders that affect the cerebral small vessels.
Fei HAN ; Siyuan FAN ; Bo HOU ; Lixin ZHOU ; Ming YAO ; Min SHEN ; Yicheng ZHU ; Joanna M WARDLAW ; Jun NI
Chinese Medical Journal 2025;138(11):1301-1312
This comprehensive review synthesizes the latest advancements in understanding inflammatory disorders affecting cerebral small vessels, a distinct yet understudied category within cerebral small vessel diseases (SVD). Unlike classical SVD, these inflammatory conditions exhibit unique clinical presentations, imaging patterns, and pathophysiological mechanisms, posing significant diagnostic and therapeutic challenges. Highlighting their heterogeneity, this review spans primary angiitis of the central nervous system, cerebral amyloid angiopathy-related inflammation, systemic vasculitis, secondary vasculitis, and vasculitis in autoinflammatory diseases. Key discussions focus on emerging insights into immune-mediated processes, neuroimaging characteristics, and histopathological distinctions. Furthermore, this review underscores the importance of standardized diagnostic frameworks, individualized immunomodulation approaches, and novel targeted therapies to address unmet clinical demands.
Humans
;
Cerebral Small Vessel Diseases/pathology*
;
Inflammation/pathology*
;
Cerebral Amyloid Angiopathy/pathology*
;
Vasculitis, Central Nervous System/pathology*
;
Vasculitis/pathology*
5.Improvement effect and mechanism of Wuling San on TGF-β1-induced fibrosis, inflammation, and oxidative stress damage in HK-2 cells.
Jun WU ; Xue-Ning JING ; Fan-Wei MENG ; Xiao-Ni KONG ; Jiu-Wang MIAO ; Cai-Xia ZHANG ; Hai-Lun LI ; Yun HAN
China Journal of Chinese Materia Medica 2025;50(5):1247-1254
This study investigated the effect of Wuling San on transforming growth factor-β1(TGF-β1)-induced fibrosis, inflammation, and oxidative stress in human renal tubular epithelial cells(HK-2) and its mechanism of antioxidant stress injury. HK-2 cells were cultured in vitro and divided into a control group, a TGF-β1 model group, and three treatment groups receiving Wuling San-containing serum at low(2.5%), medium(5.0%), and high(10.0%) doses. TGF-β1 was used to establish the model in all groups except the control group. CCK-8 was used to analyze the effect of different concentrations of Wuling San on the activity of HK-2 cells with or without TGF-β1 stimulation. The expression of key fibrosis molecules, including actin alpha 2(Acta2), collagen type Ⅰ alpha 1 chain(Col1α1), collagen type Ⅲ alpha 1 chain(Col3α1), TIMP metallopeptidase inhibitor 1(Timp1), and fibronectin 1(Fn1), was detected using qPCR. The expression levels of inflammatory cytokines, including tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-8(IL-8), and interleukin-4(IL-4), were measured using ELISA kits. Glutathione peroxidase(GSH-Px), malondialdehyde(MDA), catalase(CAT), and superoxide dismutase(SOD) biochemical kits were used to analyze the effect of Wuling San on TGF-β1-induced oxidative stress injury in HK-2 cells, and the expression of nuclear factor E2-related factor 2(Nrf2), heme oxygenase 1(HO-1), and NAD(P)H quinone oxidoreductase 1(NQO1) was analyzed by qPCR and immunofluorescence. The CCK-8 results indicated that the optimal administration concentrations of Wuling San were 2.5%, 5.0%, and 10.0%. Compared with the control group, the TGF-β1 model group showed significantly increased levels of key fibrosis molecules(Acta2, Col1α1, Col3α1, Timp1, and Fn1) and inflammatory cytokines(TNF-α, IL-1β, IL-6, IL-8, and IL-4). In contrast, the Wuling San administration groups were able to dose-dependently inhibit the expression levels of key fibrosis molecules and inflammatory cytokines compared with the TGF-β1 model group. Wuling San significantly increased the activities of GSH-Px, CAT, and SOD enzymes in TGF-β1-stimulated HK-2 cells and significantly inhibited the level of MDA. Furthermore, compared with the control group, the TGF-β1 model group exhibited a significant reduction in the expression of Nrf2, HO-1, and NQO1 genes and proteins. After Wuling San intervention, the expression of Nrf2, HO-1, and NQO1 genes and proteins was significantly increased. Correlation analysis showed that antioxidant stress enzymes(GSH-Px, CAT, and SOD) and Nrf2 signaling were significantly negatively correlated with key fibrosis molecules and inflammatory cytokines in the TGF-β1-stimulated HK-2 cell model. In conclusion, Wuling San can inhibit TGF-β1-induced fibrosis in HK-2 cells by activating the Nrf2 signaling pathway, improving oxidative stress injury, and reducing inflammation.
Humans
;
Oxidative Stress/drug effects*
;
Transforming Growth Factor beta1/metabolism*
;
Fibrosis/genetics*
;
Cell Line
;
Drugs, Chinese Herbal/pharmacology*
;
Epithelial Cells/immunology*
;
Inflammation/metabolism*
6.Potential mechanism of Yueju Pills in improving depressive symptoms of psychocardiac diseases based on metabolomics and network pharmacology.
Cheng-Yu DU ; Xue-Feng GUO ; Han-Wen ZHANG ; Jian LIANG ; Huan ZHANG ; Guo-Wei HUANG ; Ping NI ; Hai-Jun MA ; You YU ; Rui YU
China Journal of Chinese Materia Medica 2025;50(16):4564-4573
The therapeutic effects of Yueju Pills on depression and cardiovascular diseases have been widely recognized. Previous studies have shown that the drug can significantly improve depressive-like behaviors induced by chronic unpredictable mild stress(CUMS) combined with atherosclerosis(AS). Given the complex pathogenesis of psychocardiac diseases, this study integrated metabolomics and network pharmacology to systematically elucidate the mechanism of Yueju Pills in alleviating depressive symptoms in psychocardiac diseases. The results demonstrate that, after Yueju Pill intervention, the levels of 9 abnormal metabolites in the hippocampus restore to normal ranges, primarily involving key pathways or signaling pathways, including the cyclic adenosine monophosphate(cAMP), mammalian target of rapamycin(mTOR), glycine/serine/threonine metabolism, and aminoacyl-tRNA biosynthesis. In a high-fat diet-induced CUMS ApoE~(-/-) mouse model, Yueju Pills significantly increases adenosine monophosphate(AMP) levels and decreases L-alanine and D-glyceric acid levels in the hippocampus. In conclusion, Yueju Pills exert antidepressant effects by regulating multiple metabolic axes, including glycine/serine/threonine metabolism and the cAMP, mTOR signaling pathways. Network pharmacology predictions reveal that the treatment of CUMS combined with AS by its core active components may be realized through modulating pathways concerning neuroinflammation and synaptic plasticity, including serine/threonine-protein kinase 1(AKT1), mitogen-activated protein kinase 1(MAPK1), and prostaglandin-endoperoxide synthase 2(PTGS2). This study provides a theoretical reference for the clinical application of Yueju Pills in alleviating the depressive symptoms of psychocardiac diseases.
Animals
;
Network Pharmacology
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Metabolomics
;
Male
;
Depression/genetics*
;
Humans
;
Hippocampus/drug effects*
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
7.Microbiome, metabolome, and transcriptome analyses in esophageal squamous cell carcinoma: insights into immune modulation by F. nucleatum.
Xue ZHANG ; Jing HAN ; Yudong WANG ; Li FENG ; Zhisong FAN ; Yu SU ; Wenya SONG ; Lan WANG ; Long WANG ; Hui JIN ; Jiayin LIU ; Dan LI ; Guiying LI ; Yan LIU ; Jing ZUO ; Zhiyu NI
Protein & Cell 2025;16(6):491-496
8.Perspective on strengthening dementia prevention and control system: a comprehensive framework for national health.
Bin CONG ; Hengge XIE ; Yongan SUN ; Jingnian NI ; Jing SHI ; Mingqing WEI ; Fuyao LI ; Huali WANG ; Luning WANG ; Bin QIN ; Jing CHENG ; Demin HAN ; Wei XIAO ; Boli ZHANG ; Jinzhou TIAN
Frontiers of Medicine 2025;19(5):865-870
9.Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells.
Yi WANG ; Xiao-Yu SUN ; Fang-Qi MA ; Ming-Ming REN ; Ruo-Han ZHAO ; Meng-Meng QIN ; Xiao-Hong ZHU ; Yan XU ; Ni-da CAO ; Yuan-Yuan CHEN ; Tian-Geng DONG ; Yong-Fu PAN ; Ai-Guang ZHAO
Journal of Integrative Medicine 2025;23(3):320-332
OBJECTIVE:
Gastric cancer (GC) is one of the most common malignancies seen in clinic and requires novel treatment options. Morin is a natural flavonoid extracted from the flower stalk of a highly valuable medicinal plant Prunella vulgaris L., which exhibits an anti-cancer effect in multiple types of tumors. However, the therapeutic effect and underlying mechanism of morin in treating GC remains elusive. The study aims to explore the therapeutic effect and underlying molecular mechanisms of morin in GC.
METHODS:
For in vitro experiments, the proliferation inhibition of morin was measured by cell counting kit-8 assay and colony formation assay in human GC cell line MKN45, human gastric adenocarcinoma cell line AGS, and human gastric epithelial cell line GES-1; for apoptosis analysis, microscopic photography, Western blotting, ubiquitination analysis, quantitative polymerase chain reaction analysis, flow cytometry, and RNA interference technology were employed. For in vivo studies, immunohistochemistry, biomedical analysis, and Western blotting were used to assess the efficacy and safety of morin in a xenograft mouse model of GC.
RESULTS:
Morin significantly inhibited the proliferation of GC cells MKN45 and AGS in a dose- and time-dependent manner, but did not inhibit human gastric epithelial cells GES-1. Only the caspase inhibitor Z-VAD-FMK was able to significantly reverse the inhibition of proliferation by morin in both GC cells, suggesting that apoptosis was the main type of cell death during the treatment. Morin induced intrinsic apoptosis in a dose-dependent manner in GC cells, which mainly relied on B cell leukemia/lymphoma 2 (BCL-2) associated agonist of cell death (BAD) but not phorbol-12-myristate-13-acetate-induced protein 1. The upregulation of BAD by morin was due to blocking the ubiquitination degradation of BAD, rather than the transcription regulation and the phosphorylation of BAD. Furthermore, the combination of morin and BCL-2 inhibitor navitoclax (also known as ABT-737) produced a synergistic inhibitory effect in GC cells through amplifying apoptotic signals. In addition, morin treatment significantly suppressed the growth of GC in vivo by upregulating BAD and the subsequent activation of its downstream apoptosis pathway.
CONCLUSION
Morin suppressed GC by inducing apoptosis, which was mainly due to blocking the ubiquitination-based degradation of the pro-apoptotic protein BAD. The combination of morin and the BCL-2 inhibitor ABT-737 synergistically amplified apoptotic signals in GC cells, which may overcome the drug resistance of the BCL-2 inhibitor. These findings indicated that morin was a potent and promising agent for GC treatment. Please cite this article as: Wang Y, Sun XY, Ma FQ, Ren MM, Zhao RH, Qin MM, Zhu XH, Xu Y, Cao ND, Chen YY, Dong TG, Pan YF, Zhao AG. Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells. J Integr Med. 2025; 23(3): 320-332.
Humans
;
Flavonoids/therapeutic use*
;
Stomach Neoplasms/pathology*
;
Animals
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Ubiquitination/drug effects*
;
Mice
;
Drug Synergism
;
Mice, Inbred BALB C
;
Mice, Nude
;
Xenograft Model Antitumor Assays
;
Flavones
10.Preparation and efficacy of a circRNA vaccine with herpes simplex virus type Ⅱ gD as immunogen.
Suixin ZHANG ; Xiaodi ZHENG ; Peng NI ; Zhong WANG ; Biao LIU ; Yang WANG ; Han HU ; Binlei LIU
Chinese Journal of Biotechnology 2025;41(4):1354-1371
This study investigated the specific immune response of BALB/c mice that was induced by a circular RNA (circRNA) vaccine expressing the herpes simplex virus type II (HSV-2) glycoprotein D (gD). The aim was to evaluate the immunological potential of this vaccine and lay a foundation for developing an mRNA vaccine against HSV-2. PCR and homologous recombination were employed to integrate the gD gene obtained from the pT7AMP-gD ectodomain plasmid into pUC57 to generate the recombinant plasmid pUC57-circ-gD, which was then sequenced and characterized. In vitro transcription and cyclization were performed on the template DNA to generate pUC57-circ-gD mRNA. To validate the formation of circular RNA, we cleaved the pUC57-circ-gD mRNA with RNase R and employed RT-PCR to validate the cyclization. The pUC57-circ-gD mRNA was then transfected into 293T cells. After 72 h, the cell supernatant was collected, and Western blotting was employed to measure the protein level of gD. Subsequently, the mRNA was encapsulated in lipid nanoparticles (LNPs) by microfluidic encapsulation. BALB/c mice were administrated with the encapsulated mRNA, and blood was collected from the fundus venous plexus after 21 and 35 days, and from the enucleated eyeballs after 49 days. Enzyme-linked immunosorbent assay was employed to measure the titers of antibodies, including virus-neutralizing antibodies. After 49 days, spleens were harvested and assessed for secretion of interferon-gamma (IFN-γ) by solid-phase enzyme-linked immunospot. The results showed successful construction and sequencing of the recombinant plasmid. RNase R digestion confirmed the presence of circular RNAs. Western blotting of the 293T cells transfected with the mRNA showed clear specific bands. The quality of the vaccine was tested by size exclusion chromatography-high performance liquid chromatography, which showed that the purity of the vaccine was about 90%. The mRNA-LNP showcased the particle size of 82.76 nm and an encapsulation rate of approximately 98%. Following three-dose vaccination, all immunized mice exhibited steady weight gain with 100% survival rate throughout the 28-day observation period, indicating no significant acute toxicity associated with the vaccine formulation. The immunized mice showed dose-dependent increases in serum IgG antibody titer and IFN-γ secretion by splenocytes and they were resistant to virus attacks. These findings indicate good immunogenicity and persistence of the pUC57-circ-gD mRNA vaccine, providing a reference for further studies on circRNA vaccines.
Animals
;
Mice, Inbred BALB C
;
RNA, Circular
;
Mice
;
Humans
;
Herpesvirus 2, Human/genetics*
;
Viral Envelope Proteins/genetics*
;
Antibodies, Viral/blood*
;
HEK293 Cells
;
Female
;
Nanoparticles
;
Plasmids

Result Analysis
Print
Save
E-mail