1.Neuronomodulation of Excitable Neurons.
Yizhang CHEN ; Lin XIAO ; Jian QIU
Neuroscience Bulletin 2024;40(1):103-112
Neuronomodulation refers to the modulation of neural conduction and synaptic transmission (i.e., the conduction process involved in synaptic transmission) of excitable neurons via changes in the membrane potential in response to chemical substances, from spillover neurotransmitters to paracrine or endocrine hormones circulating in the blood. Neuronomodulation can be direct or indirect, depending on the transduction pathways from the ligand binding site to the ion pore, either on the same molecule, i.e. the ion channel, or through an intermediate step on different molecules. The major players in direct neuronomodulation are ligand-gated or voltage-gated ion channels. The key process of direct neuronomodulation is the binding and chemoactivation of ligand-gated or voltage-gated ion channels, either orthosterically or allosterically, by various ligands. Indirect neuronomodulation involves metabotropic receptor-mediated slow potentials, where steroid hormones, cytokines, and chemokines can implement these actions. Elucidating neuronomodulation is of great significance for understanding the physiological mechanisms of brain function, and the occurrence and treatment of diseases.
Ligands
;
Neurons/metabolism*
;
Synaptic Transmission/physiology*
;
Ion Channels/metabolism*
;
Hormones/metabolism*
2.TRPV4-induced Neurofilament Injury Contributes to Memory Impairment after High Intensity and Low Frequency Noise Exposures.
Yang YANG ; Ju WANG ; Yu Lian QUAN ; Chuan Yan YANG ; Xue Zhu CHEN ; Xue Jiao LEI ; Liang TAN ; Hua FENG ; Fei LI ; Tu Nan CHEN
Biomedical and Environmental Sciences 2023;36(1):50-59
OBJECTIVE:
Exposure to high intensity, low frequency noise (HI-LFN) causes vibroacoustic disease (VAD), with memory deficit as a primary non-auditory symptomatic effect of VAD. However, the underlying mechanism of the memory deficit is unknown. This study aimed to characterize potential mechanisms involving morphological changes of neurons and nerve fibers in the hippocampus, after exposure to HI-LFN.
METHODS:
Adult wild-type and transient receptor potential vanilloid subtype 4 knockout (TRPV4-/-) mice were used for construction of the HI-LFN injury model. The new object recognition task and the Morris water maze test were used to measure the memory of these animals. Hemoxylin and eosin and immunofluorescence staining were used to examine morphological changes of the hippocampus after exposure to HI-LFN.
RESULTS:
The expression of TRPV4 was significantly upregulated in the hippocampus after HI-LFN exposure. Furthermore, memory deficits correlated with lower densities of neurons and neurofilament-positive nerve fibers in the cornu ammonis 1 (CA1) and dentate gyrus (DG) hippocampal areas in wild-type mice. However, TRPV4-/- mice showed better performance in memory tests and more integrated neurofilament-positive nerve fibers in the CA1 and DG areas after HI-LFN exposure.
CONCLUSION
TRPV4 up-regulation induced neurofilament positive nerve fiber injury in the hippocampus, which was a possible mechanism for memory impairment and cognitive decline resulting from HI-LFN exposure. Together, these results identified a promising therapeutic target for treating cognitive dysfunction in VAD patients.
Animals
;
Mice
;
TRPV Cation Channels/metabolism*
;
Intermediate Filaments/metabolism*
;
Hippocampus/metabolism*
;
Neurons/metabolism*
;
Memory Disorders/metabolism*
3.Bombyx Batryticatus extract promotes microglia polarization to improve neuron injury and behaviors of cerebral ischemia/reperfusion rats.
Pei-Mei HOU ; Hao XU ; Ze-Kang LI ; Hao ZHOU ; Shan-Shan WANG ; Jin-Wen GE
China Journal of Chinese Materia Medica 2023;48(6):1589-1596
This study aims to investigate the effect of Bombyx Batryticatus extract(BBE) on behaviors of rats with global cerebral ischemia reperfusion(I/R) and the underlying mechanism. The automatic coagulometer was used to detect the four indices of human plasma coagulation after BBE intervention for quality control of the extract. Sixty 4-week-old male SD rats were randomized into sham operation group(equivalent volume of normal saline, ip), model group(equivalent volume of normal saline, ip), positive drug group(900 IU·kg~(-1) heparin, ip), and low-, medium-, and high-dose BBE groups(0.45, 0.9, and 1.8 mg·g~(-1)·d~(-1) BBE, ip). Except the sham operation group, rats were subjected to bilateral common carotid artery occlusion followed by reperfusion(BCCAO/R) to induce I/R. The administration lasted 7 days for all the groups. The behaviors of rats were examined by beam balance test(BBT). Morphological changes of brain tissue were observed based on hematoxylin-eosin(HE) staining. Immunofluorescence method was used to detect common leukocyte antigen(CD45), leukocyte differentiation antigen(CD11b), and arginase-1(Arg-1) in cerebral cortex(CC). The protein expression of interleukin-1β(IL-1β), interleukin-4(IL-4), interleukin-6(IL-6), and interleukin-10(IL-10) was detected by enzyme-linked immunosorbent assay(ELISA). The non-targeted metabonomics was employed to detect the levels of metabolites in plasma and CC of rats after BBE intervention. The results of quality control showed that the BBE prolonged the activated partial thromboplastin time(APTT), prothrombin time(PT), and thrombin time(TT) of human plasma, which was similar to the anticoagulation effect of BBE obtained previously. The results of behavioral test showed that the BBT score of the model group increased compared with that of the sham operation group. Compared with the model group, BBE reduced the BBT score. As for the histomorphological examination, compared with the sham operation group, the model group showed morphological changes of a lot of nerve cells in CC. The nerve cells with abnormal morphology in CC decreased after the intervention of BBE compared with those in the model group. Compared with the sham operation group, the model group had high average fluorescence intensity of CD45 and CD11b in the CC. The average fluorescence intensity of CD11b decreased and the average fluorescence intensity of Arg-1 increased in CC in the low-dose BBE group compared with those in the model group. The average fluorescence intensity of CD45 and CD11b decreased and the average fluorescence intensity of Arg-1 increased in medium-and high-dose BBE groups compared with those in the model group. The expression of IL-1β and IL-6 was higher and the expression of IL-4 and IL-10 was lower in the model group than in the sham operation group. The expression of IL-1β and IL-6 was lower and the expression of IL-4 and IL-10 was higher in the low-dose, medium-dose, and high-dose BBE groups than in the model group. The results of non-targeted metabonomics showed that 809 metabolites of BBE were identified, and 57 new metabolites in rat plasma and 45 new metabolites in rat CC were found. BBE with anticoagulant effect can improve the behaviors of I/R rats, and the mechanism is that it promotes the polarization of microglia to M2 type, enhances its anti-inflammatory and phagocytic functions, and thus alleviates the damage of nerve cells in CC.
Humans
;
Rats
;
Male
;
Animals
;
Interleukin-10
;
Rats, Sprague-Dawley
;
Interleukin-4/metabolism*
;
Bombyx
;
Interleukin-6/metabolism*
;
Microglia/metabolism*
;
Saline Solution/metabolism*
;
Reperfusion Injury/metabolism*
;
Brain Ischemia/metabolism*
;
Cerebral Infarction
;
Reperfusion
;
Neurons
4.miR-34b-3p Inhibition of eIF4E Causes Post-stroke Depression in Adult Mice.
Xiao KE ; Manfei DENG ; Zhuoze WU ; Hongyan YU ; Dian YU ; Hao LI ; Youming LU ; Kai SHU ; Lei PEI
Neuroscience Bulletin 2023;39(2):194-212
Post-stroke depression (PSD) is a serious and common complication of stroke, which seriously affects the rehabilitation of stroke patients. To date, the pathogenesis of PSD is unclear and effective treatments remain unavailable. Here, we established a mouse model of PSD through photothrombosis-induced focal ischemia. By using a combination of brain imaging, transcriptome sequencing, and bioinformatics analysis, we found that the hippocampus of PSD mice had a significantly lower metabolic level than other brain regions. RNA sequencing revealed a significant reduction of miR34b-3p, which was expressed in hippocampal neurons and inhibited the translation of eukaryotic translation initiation factor 4E (eIF4E). Furthermore, silencing eIF4E inactivated microglia, inhibited neuroinflammation, and abolished the depression-like behaviors in PSD mice. Together, our data demonstrated that insufficient miR34b-3p after stroke cannot inhibit eIF4E translation, which causes PSD by the activation of microglia in the hippocampus. Therefore, miR34b-3p and eIF4E may serve as potential therapeutic targets for the treatment of PSD.
Animals
;
Mice
;
Depression
;
Eukaryotic Initiation Factor-4E/metabolism*
;
MicroRNAs/metabolism*
;
Neurons/metabolism*
;
Stroke/metabolism*
6.Association of Glial Activation and α-Synuclein Pathology in Parkinson's Disease.
Rui WANG ; Haigang REN ; Elena KAZNACHEYEVA ; Xiaojun LU ; Guanghui WANG
Neuroscience Bulletin 2023;39(3):479-490
The accumulation of pathological α-synuclein (α-syn) in the central nervous system and the progressive loss of dopaminergic neurons in the substantia nigra pars compacta are the neuropathological features of Parkinson's disease (PD). Recently, the findings of prion-like transmission of α-syn pathology have expanded our understanding of the region-specific distribution of α-syn in PD patients. Accumulating evidence suggests that α-syn aggregates are released from neurons and endocytosed by glial cells, which contributes to the clearance of α-syn. However, the activation of glial cells by α-syn species produces pro-inflammatory factors that decrease the uptake of α-syn aggregates by glial cells and promote the transmission of α-syn between neurons, which promotes the spread of α-syn pathology. In this article, we provide an overview of current knowledge on the role of glia and α-syn pathology in PD pathogenesis, highlighting the relationships between glial responses and the spread of α-syn pathology.
Humans
;
Parkinson Disease/pathology*
;
alpha-Synuclein/metabolism*
;
Dopaminergic Neurons/metabolism*
;
Pars Compacta/metabolism*
7.Somatostatin-Positive Neurons in the Rostral Zona Incerta Modulate Innate Fear-Induced Defensive Response in Mice.
Shan LIN ; Meng-Yue ZHU ; Meng-Yu TANG ; Mi WANG ; Xiao-Dan YU ; Yi ZHU ; Shi-Ze XIE ; Dan YANG ; Jiadong CHEN ; Xiao-Ming LI
Neuroscience Bulletin 2023;39(2):245-260
Defensive behaviors induced by innate fear or Pavlovian fear conditioning are crucial for animals to avoid threats and ensure survival. The zona incerta (ZI) has been demonstrated to play important roles in fear learning and fear memory, as well as modulating auditory-induced innate defensive behavior. However, whether the neuronal subtypes in the ZI and specific circuits can mediate the innate fear response is largely unknown. Here, we found that somatostatin (SST)-positive neurons in the rostral ZI of mice were activated by a visual innate fear stimulus. Optogenetic inhibition of SST-positive neurons in the rostral ZI resulted in reduced flight responses to an overhead looming stimulus. Optogenetic activation of SST-positive neurons in the rostral ZI induced fear-like defensive behavior including increased immobility and bradycardia. In addition, we demonstrated that manipulation of the GABAergic projections from SST-positive neurons in the rostral ZI to the downstream nucleus reuniens (Re) mediated fear-like defensive behavior. Retrograde trans-synaptic tracing also revealed looming stimulus-activated neurons in the superior colliculus (SC) that projected to the Re-projecting SST-positive neurons in the rostral ZI (SC-ZIrSST-Re pathway). Together, our study elucidates the function of SST-positive neurons in the rostral ZI and the SC-ZIrSST-Re tri-synaptic circuit in mediating the innate fear response.
Mice
;
Animals
;
Zona Incerta/metabolism*
;
Neurons/metabolism*
;
Fear/physiology*
;
Somatostatin/metabolism*
8.Disrupted Maturation of Prefrontal Layer 5 Neuronal Circuits in an Alzheimer's Mouse Model of Amyloid Deposition.
Chang CHEN ; Jing WEI ; Xiaokuang MA ; Baomei XIA ; Neha SHAKIR ; Jessica K ZHANG ; Le ZHANG ; Yuehua CUI ; Deveroux FERGUSON ; Shenfeng QIU ; Feng BAI
Neuroscience Bulletin 2023;39(6):881-892
Mutations in genes encoding amyloid precursor protein (APP) and presenilins (PSs) cause familial forms of Alzheimer's disease (AD), a neurodegenerative disorder strongly associated with aging. It is currently unknown whether and how AD risks affect early brain development, and to what extent subtle synaptic pathology may occur prior to overt hallmark AD pathology. Transgenic mutant APP/PS1 over-expression mouse lines are key tools for studying the molecular mechanisms of AD pathogenesis. Among these lines, the 5XFAD mice rapidly develop key features of AD pathology and have proven utility in studying amyloid plaque formation and amyloid β (Aβ)-induced neurodegeneration. We reasoned that transgenic mutant APP/PS1 over-expression in 5XFAD mice may lead to neurodevelopmental defects in early cortical neurons, and performed detailed synaptic physiological characterization of layer 5 (L5) neurons from the prefrontal cortex (PFC) of 5XFAD and wild-type littermate controls. L5 PFC neurons from 5XFAD mice show early APP/Aβ immunolabeling. Whole-cell patch-clamp recording at an early post-weaning age (P22-30) revealed functional impairments; although 5XFAD PFC-L5 neurons exhibited similar membrane properties, they were intrinsically less excitable. In addition, these neurons received smaller amplitude and frequency of miniature excitatory synaptic inputs. These functional disturbances were further corroborated by decreased dendritic spine density and spine head volumes that indicated impaired synapse maturation. Slice biotinylation followed by Western blot analysis of PFC-L5 tissue revealed that 5XFAD mice showed reduced synaptic AMPA receptor subunit GluA1 and decreased synaptic NMDA receptor subunit GluN2A. Consistent with this, patch-clamp recording of the evoked L23>L5 synaptic responses revealed a reduced AMPA/NMDA receptor current ratio, and an increased level of AMPAR-lacking silent synapses. These results suggest that transgenic mutant forms of APP/PS1 overexpression in 5XFAD mice leads to early developmental defects of cortical circuits, which could contribute to the age-dependent synaptic pathology and neurodegeneration later in life.
Mice
;
Animals
;
Alzheimer Disease/pathology*
;
Amyloid beta-Peptides/metabolism*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Mice, Transgenic
;
Neurons/metabolism*
;
Receptors, AMPA/metabolism*
;
Disease Models, Animal
9.Functional Autapses Form in Striatal Parvalbumin Interneurons but not Medium Spiny Projection Neurons.
Xuan WANG ; Zhenfeng SHU ; Quansheng HE ; Xiaowen ZHANG ; Luozheng LI ; Xiaoxue ZHANG ; Liang LI ; Yujie XIAO ; Bo PENG ; Feifan GUO ; Da-Hui WANG ; Yousheng SHU
Neuroscience Bulletin 2023;39(4):576-588
Autapses selectively form in specific cell types in many brain regions. Previous studies have also found putative autapses in principal spiny projection neurons (SPNs) in the striatum. However, it remains unclear whether these neurons indeed form physiologically functional autapses. We applied whole-cell recording in striatal slices and identified autaptic cells by the occurrence of prolonged asynchronous release (AR) of neurotransmitters after bursts of high-frequency action potentials (APs). Surprisingly, we found no autaptic AR in SPNs, even in the presence of Sr2+. However, robust autaptic AR was recorded in parvalbumin (PV)-expressing neurons. The autaptic responses were mediated by GABAA receptors and their strength was dependent on AP frequency and number. Further computer simulations suggest that autapses regulate spiking activity in PV cells by providing self-inhibition and thus shape network oscillations. Together, our results indicate that PV neurons, but not SPNs, form functional autapses, which may play important roles in striatal functions.
Parvalbumins/metabolism*
;
Corpus Striatum/metabolism*
;
Interneurons/physiology*
;
Neurons/metabolism*
;
Neostriatum
10.Inhibition of Foxp4 Disrupts Cadherin-based Adhesion of Radial Glial Cells, Leading to Abnormal Differentiation and Migration of Cortical Neurons in Mice.
Xue LI ; Shimin ZOU ; Xiaomeng TU ; Shishuai HAO ; Tian JIANG ; Jie-Guang CHEN
Neuroscience Bulletin 2023;39(7):1131-1145
Heterozygous loss-of-function variants of FOXP4 are associated with neurodevelopmental disorders (NDDs) that exhibit delayed speech development, intellectual disability, and congenital abnormalities. The etiology of NDDs is unclear. Here we found that FOXP4 and N-cadherin are expressed in the nuclei and apical end-feet of radial glial cells (RGCs), respectively, in the mouse neocortex during early gestation. Knockdown or dominant-negative inhibition of Foxp4 abolishes the apical condensation of N-cadherin in RGCs and the integrity of neuroepithelium in the ventricular zone (VZ). Inhibition of Foxp4 leads to impeded radial migration of cortical neurons and ectopic neurogenesis from the proliferating VZ. The ectopic differentiation and deficient migration disappear when N-cadherin is over-expressed in RGCs. The data indicate that Foxp4 is essential for N-cadherin-based adherens junctions, the loss of which leads to periventricular heterotopias. We hypothesize that FOXP4 variant-associated NDDs may be caused by disruption of the adherens junctions and malformation of the cerebral cortex.
Mice
;
Animals
;
Ependymoglial Cells/physiology*
;
Cadherins
;
Neurons/metabolism*
;
Cerebral Cortex/metabolism*
;
Cell Differentiation
;
Cell Movement

Result Analysis
Print
Save
E-mail