1.Potential role of FNDC5 in exercise-induced improvement of cognitive function.
Ruobing ZHAO ; Xuchang ZHOU ; Dongxue WANG ; Haifeng TANG ; Guoxin NI
Journal of Zhejiang University. Science. B 2025;26(6):557-572
Cognitive dysfunction often occurs in Alzheimer's disease, Parkinson's disease, cerebrovascular disease, or other neurodegenerative diseases, and can significantly impact the life quality of patients and create serious social, psychological, and economic burdens for individuals and their families. Numerous studies have confirmed that exercise can slow the decline in cognitive function through multiple pathways, in which fibronectin type III domain-containing protein 5 (FNDC5) plays an important role. However, the current research on the modulation of FNDC5 by exercise and its ability to improve hippocampal cognitive function lacks a systematic and comprehensive understanding. Therefore, this review focuses on the latest research progress regarding the role of exercise-induced FNDC5 in cognitive function, systematically reviews the positive effects of FNDC5 on cognitive function impairment caused by various factors, and clarifies the specific mechanisms by which exercise-induced FNDC5 improves cognitive function by inhibiting neuroinflammation and improving hippocampal neurogenesis and hippocampal synaptic plasticity. Based on the existing literature, we also identify the areas that require further research in this field. Overall, this review provides a theoretical basis for exercise-based prevention and improvement of cognitive function impairment.
Humans
;
Cognition/physiology*
;
Fibronectins/physiology*
;
Exercise/physiology*
;
Hippocampus/physiology*
;
Cognitive Dysfunction/prevention & control*
;
Neuronal Plasticity
;
Animals
;
Neurogenesis
2.The neurophysiological mechanisms of exercise-induced improvements in cognitive function.
Jian-Xiu LIU ; Bai-Le WU ; Di-Zhi WANG ; Xing-Tian LI ; Yan-Wei YOU ; Lei-Zi MIN ; Xin-Dong MA
Acta Physiologica Sinica 2025;77(3):504-522
The neurophysiological mechanisms by which exercise improves cognitive function have not been fully elucidated. A comprehensive and systematic review of current domestic and international neurophysiological evidence on exercise improving cognitive function was conducted from multiple perspectives. At the molecular level, exercise promotes nerve cell regeneration and synaptogenesis and maintains cellular development and homeostasis through the modulation of a variety of neurotrophic factors, receptor activity, neuropeptides, and monoamine neurotransmitters, and by decreasing the levels of inflammatory factors and other modulators of neuroplasticity. At the cellular level, exercise enhances neural activation and control and improves brain structure through nerve regeneration, synaptogenesis, improved glial cell function and angiogenesis. At the structural level of the brain, exercise promotes cognitive function by affecting white and gray matter volumes, neural activation and brain region connectivity, as well as increasing cerebral blood flow. This review elucidates how exercise improves the internal environment at the molecular level, promotes cell regeneration and functional differentiation, and enhances the brain structure and neural efficiency. It provides a comprehensive, multi-dimensional explanation of the neurophysiological mechanisms through which exercise promotes cognitive function.
Animals
;
Humans
;
Brain/physiology*
;
Cognition/physiology*
;
Exercise/physiology*
;
Nerve Regeneration/physiology*
;
Neuronal Plasticity/physiology*
3.Associative Learning-Induced Synaptic Potentiation at the Two Major Hippocampal CA1 Inputs for Cued Memory Acquisition.
Bing-Ying WANG ; Bo WANG ; Bo CAO ; Ling-Ling GU ; Jiayu CHEN ; Hua HE ; Zheng ZHAO ; Fujun CHEN ; Zhiru WANG
Neuroscience Bulletin 2025;41(4):649-664
Learning-associated functional plasticity at hippocampal synapses remains largely unexplored. Here, in a single session of reward-based trace conditioning, we examine learning-induced synaptic plasticity in the dorsal CA1 hippocampus (dCA1). Local field-potential recording combined with selective optogenetic inhibition first revealed an increase of dCA1 synaptic responses to the conditioned stimulus (CS) induced during conditioning at both Schaffer collaterals to the stratum radiatum (Rad) and temporoammonic input to the lacunosum moleculare (LMol). At these dCA1 inputs, synaptic potentiation of CS-responding excitatory synapses was further demonstrated by locally blocking NMDA receptors during conditioning and whole-cell recording sensory-evoked synaptic responses in dCA1 neurons from naive animals. An overall similar time course of the induction of synaptic potentiation was found in the Rad and LMol by multiple-site recording; this emerged later and saturated earlier than conditioned behavioral responses. Our experiments demonstrate a cued memory-associated dCA1 synaptic plasticity induced at both Schaffer collaterals and temporoammonic pathways.
Animals
;
CA1 Region, Hippocampal/physiology*
;
Male
;
Association Learning/physiology*
;
Neuronal Plasticity/physiology*
;
Cues
;
Memory/physiology*
;
Synapses/physiology*
;
Conditioning, Classical/physiology*
;
Excitatory Postsynaptic Potentials/physiology*
;
Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors*
;
Rats
;
Optogenetics
4.Embracing Internal States: A Review of Optimization of Repetitive Transcranial Magnetic Stimulation for Treating Depression.
Tingting WU ; Qiuxuan YU ; Ximei ZHU ; Yinjiao LI ; Mingyue ZHANG ; Jiahui DENG ; Lin LU
Neuroscience Bulletin 2025;41(5):866-880
Repetitive transcranial magnetic stimulation (rTMS) is a rapid and effective therapy for major depressive disorder; however, there is significant variability in therapeutic outcomes both within and across individuals, with approximately 50% of patients showing no response to rTMS treatment. Many studies have personalized the stimulation parameters of rTMS (e.g., location and intensity of stimulation) according to the anatomical and functional structure of the brain. In addition to these parameters, the internal states of the individual, such as circadian rhythm, behavior/cognition, neural oscillation, and neuroplasticity, also contribute to the variation in rTMS effects. In this review, we summarize the current literature on the interaction between rTMS and internal states. We propose two possible methods, multimodal treatment, and adaptive closed-loop treatment, to integrate patients' internal states to achieve better rTMS treatment for depression.
Humans
;
Transcranial Magnetic Stimulation/methods*
;
Depressive Disorder, Major/physiopathology*
;
Neuronal Plasticity/physiology*
;
Brain/physiopathology*
5.The Supplementary Motor Area as a Flexible Hub Mediating Behavioral and Neuroplastic Changes in Motor Sequence Learning: A TMS and TMS-EEG Study.
Jing CHEN ; Yanzi FAN ; Xize JIA ; Fengmei FAN ; Jinhui WANG ; Qihong ZOU ; Bing CHEN ; Xianwei CHE ; Yating LV
Neuroscience Bulletin 2025;41(5):837-852
Attempts have been made to modulate motor sequence learning (MSL) through repetitive transcranial magnetic stimulation, targeting different sites within the sensorimotor network. However, the target with the optimum modulatory effect on neural plasticity associated with MSL remains unclarified. This study was therefore designed to compare the role of the left primary motor cortex and the left supplementary motor area proper (SMAp) in modulating MSL across different complexity levels and for both hands, as well as the associated neuroplasticity by applying intermittent theta burst stimulation together with the electroencephalogram and concurrent transcranial magnetic stimulation. Our data demonstrated the role of SMAp stimulation in modulating neural communication to support MSL, which is achieved by facilitating regional activation and orchestrating neural coupling across distributed brain regions, particularly in interhemispheric connections. These findings may have important clinical implications, particularly for motor rehabilitation in populations such as post-stroke patients.
Humans
;
Transcranial Magnetic Stimulation
;
Motor Cortex/physiology*
;
Male
;
Electroencephalography
;
Neuronal Plasticity/physiology*
;
Female
;
Adult
;
Evoked Potentials, Motor/physiology*
;
Young Adult
;
Learning/physiology*
6.Recent Advances in the Molecular Mechanisms of Ocular Dominance Plasticity in the Visual Cortex.
Yanglin QIN ; Wei WANG ; Yu GU ; Xuefeng SHI
Neuroscience Bulletin 2025;41(9):1645-1655
The visual cortex is an essential part of the brain for processing visual information. It exhibits structural and functional plasticity, which is crucial for adapting to complex visual environments. The quintessential manifestation of visual cortical plasticity is ocular dominance plasticity during the critical period, which involves numerous cellular and molecular events. While previous studies have emphasized the role of visual cortical neurons and their associated functional molecules in visual plasticity, recent findings have revealed that structural factors such as the extracellular matrix and glia are also involved. Investigating how these molecules interact to form a complex network that facilitates plasticity in the visual cortex is crucial to our understanding of the development of the visual system and the advancement of therapeutic strategies for visual disorders like amblyopia.
Neuronal Plasticity/physiology*
;
Dominance, Ocular/physiology*
;
Visual Cortex/physiology*
;
Humans
;
Animals
;
Neurons/physiology*
7.USP47 Regulates Excitatory Synaptic Plasticity and Modulates Seizures in Murine Models by Blocking Ubiquitinated AMPAR Degradation.
Juan YANG ; Haiqing ZHANG ; You WANG ; Yuemei LUO ; Weijin ZHENG ; Yong LIU ; Qian JIANG ; Jing DENG ; Qiankun LIU ; Peng ZHANG ; Hao HUANG ; Changyin YU ; Zucai XU ; Yangmei CHEN
Neuroscience Bulletin 2025;41(10):1805-1823
Epilepsy is a chronic neurological disorder affecting ~65 million individuals worldwide. Abnormal synaptic plasticity is one of the most important pathological features of this condition. We investigated how ubiquitin-specific peptidase 47 (USP47) influences synaptic plasticity and its link to epilepsy. We found that USP47 enhanced excitatory postsynaptic transmission and increased the density of total dendritic spines and the proportion of mature dendritic spines. Furthermore, USP47 inhibited the degradation of the ubiquitinated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit glutamate receptor 1 (GluR1), which is associated with synaptic plasticity. In addition, elevated levels of USP47 were found in epileptic mice, and USP47 knockdown reduced the frequency and duration of seizure-like events and alleviated epileptic seizures. To summarize, we present a new mechanism whereby USP47 regulates excitatory postsynaptic plasticity through the inhibition of ubiquitinated GluR1 degradation. Modulating USP47 may offer a potential approach for controlling seizures and modifying disease progression in future therapeutic strategies.
Animals
;
Receptors, AMPA/metabolism*
;
Neuronal Plasticity/physiology*
;
Seizures/physiopathology*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Mice
;
Ubiquitin Thiolesterase/genetics*
;
Male
;
Excitatory Postsynaptic Potentials/physiology*
;
Ubiquitination
;
Dendritic Spines/metabolism*
;
Hippocampus/metabolism*
8.Downregulation of Neuralized1 in the Hippocampal CA1 Through Reducing CPEB3 Ubiquitination Mediates Synaptic Plasticity Impairment and Cognitive Deficits in Neuropathic Pain.
Yan GAO ; Yiming QIAO ; Xueli WANG ; Manyi ZHU ; Lili YU ; Haozhuang YUAN ; Liren LI ; Nengwei HU ; Ji-Tian XU
Neuroscience Bulletin 2025;41(12):2233-2253
Neuropathic pain is frequently comorbidity with cognitive deficits. Neuralized1 (Neurl1)-mediated ubiquitination of CPEB3 in the hippocampus is critical in learning and memory. However, the role of Neurl1 in the cognitive impairment in neuropathic pain remains elusive. Herein, we found that lumbar 5 spinal nerve ligation (SNL) in male rat-induced neuropathic pain was followed by learning and memory deficits and LTP impairment in the hippocampus. The Neurl1 expression in the hippocampal CA1 was decreased after SNL. And this decrease paralleled the reduction of ubiquitinated-CPEB3 level and reduced production of GluA1 and GluA2. Overexpression of Neurl1 in the CA1 rescued cognitive deficits and LTP impairment, and reversed the reduction of ubiquitinated-CPEB3 level and the decrease of GluA1 and GluA2 production following SNL. Specific knockdown of Neurl1 or CPEB3 in bilateral hippocampal CA1 in naïve rats resulted in cognitive deficits and impairment of synaptic plasticity. The rescued cognitive function and synaptic plasticity by the treatment of overexpression of Neurl1 before SNL were counteracted by the knockdown of CPEB3 in the CA1. Collectively, the above results suggest that the downregulation of Neurl1 through reducing CPEB3 ubiquitination and, in turn, repressing GluA1 and GluA2 production and mediating synaptic plasticity impairment in hippocampal CA1 leads to the genesis of cognitive deficits in neuropathic pain.
Animals
;
Male
;
Neuralgia/metabolism*
;
Rats
;
Down-Regulation/physiology*
;
Ubiquitination/physiology*
;
Neuronal Plasticity/physiology*
;
Rats, Sprague-Dawley
;
CA1 Region, Hippocampal/metabolism*
;
Cognitive Dysfunction/metabolism*
;
RNA-Binding Proteins/metabolism*
;
Receptors, AMPA/metabolism*
9.Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke.
Fangxi LIU ; Xi CHENG ; Chuansheng ZHAO ; Xiaoqian ZHANG ; Chang LIU ; Shanshan ZHONG ; Zhouyang LIU ; Xinyu LIN ; Wei QIU ; Xiuchun ZHANG
Neuroscience Bulletin 2024;40(1):65-78
Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.
Humans
;
Ischemic Stroke
;
Brain/metabolism*
;
Macrophages
;
Brain Ischemia/metabolism*
;
Microglia/metabolism*
;
Gene Expression Profiling
;
Anti-Inflammatory Agents
;
Neuronal Plasticity/physiology*
;
Infarction/metabolism*
10.Specific and Plastic: Chandelier Cell-to-Axon Initial Segment Connections in Shaping Functional Cortical Network.
Yanqing QI ; Rui ZHAO ; Jifeng TIAN ; Jiangteng LU ; Miao HE ; Yilin TAI
Neuroscience Bulletin 2024;40(11):1774-1788
Axon initial segment (AIS) is the most excitable subcellular domain of a neuron for action potential initiation. AISs of cortical projection neurons (PNs) receive GABAergic synaptic inputs primarily from chandelier cells (ChCs), which are believed to regulate action potential generation and modulate neuronal excitability. As individual ChCs often innervate hundreds of PNs, they may alter the activity of PN ensembles and even impact the entire neural network. During postnatal development or in response to changes in network activity, the AISs and axo-axonic synapses undergo dynamic structural and functional changes that underlie the wiring, refinement, and adaptation of cortical microcircuits. Here we briefly introduce the history of ChCs and review recent research advances employing modern genetic and molecular tools. Special attention will be attributed to the plasticity of the AIS and the ChC-PN connections, which play a pivotal role in shaping the dynamic network under both physiological and pathological conditions.
Animals
;
Neuronal Plasticity/physiology*
;
Cerebral Cortex/cytology*
;
Axons/physiology*
;
Nerve Net/physiology*
;
Humans
;
Synapses/physiology*
;
GABAergic Neurons/physiology*

Result Analysis
Print
Save
E-mail