1.Genetic background of idiopathic neurodevelopmental delay patients with significant brain deviation volume.
Xiang CHEN ; Yuxi CHEN ; Kai YAN ; Huiyao CHEN ; Qian QIN ; Lin YANG ; Bo LIU ; Guoqiang CHENG ; Yun CAO ; Bingbing WU ; Xinran DONG ; Zhongwei QIAO ; Wenhao ZHOU
Chinese Medical Journal 2023;136(7):807-814
BACKGROUND:
Significant brain volume deviation is an essential phenotype in children with neurodevelopmental delay (NDD), but its genetic basis has not been fully characterized. This study attempted to analyze the genetic factors associated with significant whole-brain deviation volume (WBDV).
METHODS:
We established a reference curve based on 4222 subjects ranging in age from the first postnatal day to 18 years. We recruited only NDD patients without acquired etiologies or positive genetic results. Cranial magnetic resonance imaging (MRI) and clinical exome sequencing (2742 genes) data were acquired. A genetic burden test was performed, and the results were compared between patients with and without significant WBDV. Literature review analyses and BrainSpan analysis based on the human brain developmental transcriptome were performed to detect the potential role of genetic risk factors in human brain development.
RESULTS:
We recruited a total of 253 NDD patients. Among them, 26 had significantly decreased WBDV (<-2 standard deviations [SDs]), and 14 had significantly increased WBDV (>+2 SDs). NDD patients with significant WBDV had higher rates of motor development delay (49.8% [106/213] vs . 75.0% [30/40], P = 0.003) than patients without significant WBDV. Genetic burden analyses found 30 genes with an increased allele frequency of rare variants in patients with significant WBDV. Analyses of the literature further demonstrated that these genes were not randomly identified: burden genes were more related to the brain development than background genes ( P = 1.656e -9 ). In seven human brain regions related to motor development, we observed burden genes had higher expression before 37-week gestational age than postnatal stages. Functional analyses found that burden genes were enriched in embryonic brain development, with positive regulation of synaptic growth at the neuromuscular junction, positive regulation of deoxyribonucleic acid templated transcription, and response to hormone, and these genes were shown to be expressed in neural progenitors. Based on single cell sequencing analyses, we found TUBB2B gene had elevated expression levels in neural progenitor cells, interneuron, and excitatory neuron and SOX15 had high expression in interneuron and excitatory neuron.
CONCLUSION
Idiopathic NDD patients with significant brain volume changes detected by MRI had an increased prevalence of motor development delay, which could be explained by the genetic differences characterized herein.
Child
;
Humans
;
Neurodevelopmental Disorders/epidemiology*
;
Genetic Testing
;
Phenotype
;
Brain/pathology*
;
Genetic Background
;
SOX Transcription Factors/genetics*
2.Genetic analysis of a child with early onset neurodevelopmental disorder with involuntary movement and a literature review.
Wenjing HU ; Hongjun FANG ; Jingwen TANG ; Zhen ZHOU ; Liwen WU
Chinese Journal of Medical Genetics 2023;40(4):385-389
OBJECTIVE:
To explore the clinical phenotype and genetic basis of a child with early onset neurodevelopmental disorder with involuntary movement (NEDIM).
METHODS:
A child who presented at Department of Neurology of Hunan Children's Hospital on October 8, 2020 was selected as the study subject. Clinical data of the child were collected. Genomic DNA was extracted from peripheral blood samples of the child and his parents. Whole exome sequencing (WES) was carried out for the child. Candidate variant was verified by Sanger sequencing and bioinformatic analysis. Relevant literature was searched from the CNKI, PubMed and Google Scholar databases to summarize the clinical phenotypes and genetic variants of the patients.
RESULTS:
This child was a 3-year-and-3-month boy with involuntary trembling of limbs and motor and language delay. WES revealed that the child has harbored a c.626G>A (p.Arg209His) variant of the GNAO1 gene. Sanger sequencing confirmed that neither of his parents has carried the same variant. The variant had been reported in HGMD and ClinVar databases, but not in the dbSNP, ExAC and 1000 Genomes databases. Prediction with SIFT, PolyPhen-2, and Mutation Taster online software suggested that the variant may be deleterious to the protein function. By UniProt database analysis, the encode amino acid is highly conserved among various species. Prediction with Modeller and PyMOL software indicated that the variant may affect the function of GαO protein. Based on the guideline of the American College of Medical Genetics and Genomics (ACMG), the variant was rated as pathogenic.
CONCLUSION
The GNAO1 gene c.626G>A (p.Arg209His) variant probably underlay the NEDIM in this child. Above finding has expanded the phenotypic spectrum of GNAO1 gene c.626G>A (p.Arg209His) variant and provided a reference for clinical diagnosis and genetic counseling.
Humans
;
Computational Biology
;
Genetic Counseling
;
Genomics
;
Mutation
;
Neurodevelopmental Disorders/genetics*
;
Dyskinesias
;
GTP-Binding Protein alpha Subunits, Gi-Go
3.Depression and anxiety among caregivers of children and adolescents with neurodevelopmental disorders in a government tertiary hospital during the Covid-19 pandemic
Erik Jan T. Estrada ; Ermenilda L. Avendañ ; o ; Anna Lizza S. Mañ ; alac
The Philippine Children’s Medical Center Journal 2023;19(2):17-31
Objectives:
To determine the burden of COVID-19 related mental health problems such as
anxiety and/or depression among caregivers of children and adolescents with neurodevelopmental
disorders in a government tertiary hospital.
Materials and Methods:
This is a cross-sectional study conducted at the Out-patient
Department of PCMC. Caregiver data sheet and HADS-P forms were given to eligible caregivers.
Results:
A total of 102 caregivers were included. The prevalence of significant risk for
anxiety disorder among caregivers of children and adolescents with neurodevelopmental disorders
is 34.31% (n=35), 1.96% (n=2) for depression and 3.92% (n=4) for both anxiety and depression.
Using logistic regression, marital status of common law partner and female sex have significant
association with depression and anxiety; the number of household members has a direct
association to significant risk for both anxiety and depression.
Conclusion
Female sex and common law partnership as marital status are associated with
2-3 times of having significant risk for anxiety or depression. The number of household members
is correlated with an increased significant risk of having both anxiety and depression. Screening
caregivers using appropriate tests would identify caregivers at significant risk for anxiety and
depression and further create intervention programs.
Anxiety
;
Depression
;
Caregiversl
;
Neurodevelopmental Disorders
;
COVID-19
;
Mental Health
4.Analysis of NOVA2 gene variant in a child with Neurodevelopmental disorder with or without autistic features and/or structural brain abnormalities.
Guangyu ZHANG ; Sansong LI ; Lei YANG ; Mingmei WANG ; Gongxun CHEN ; Dengna ZHU
Chinese Journal of Medical Genetics 2023;40(2):213-216
OBJECTIVE:
To explore the genetic basis for a child with Neurodevelopmental disorder with or without autistic features and/or structural brain abnormalities (NEDASB).
METHODS:
A child with NEDASB who presented at the Third Affiliated Hospital of Zhengzhou University in July 2021 was selected as the subject. Peripheral blood samples of the child and her parents were collected and subjected to high-throughput sequencing. Candidate variant was verified by Sanger sequencing and bioinformatic analysis.
RESULTS:
The child was found to harbor a heterozygous c.820_828delinsCTTCA (p.Thr274Leufs*121) variant of the NOVA2 gene, for which both of her parents were of wild type. The variant was predicted as pathogenic based on the guidelines from the American College of Medical Genetics and Genomics.
CONCLUSION
The heterozygous c.820_828delinsCTTCA (p.Thr274Leufs*121) variant of the NOVA2 gene probably underlay the disease in this child. Above finding has enriched the spectrum of NOVA2 gene variants and provided a basis for genetic counseling and prenatal diagnosis for this family.
Child
;
Female
;
Humans
;
Pregnancy
;
Autistic Disorder/genetics*
;
Brain
;
Computational Biology
;
Genetic Counseling
;
Mutation
;
Nerve Tissue Proteins/genetics*
;
Neuro-Oncological Ventral Antigen
;
Neurodevelopmental Disorders
;
RNA-Binding Proteins
5.Recent research on neurodevelopmental disorders in children.
Hong-Min ZHU ; Chun-Hui YUAN ; Zhi-Sheng LIU
Chinese Journal of Contemporary Pediatrics 2023;25(1):91-97
Neurodevelopmental disorders (NDDs) in children are a group of chronic developmental brain disorders caused by multiple genetic or acquired causes, including disorders of intellectual development, developmental speech or language disorders, autism spectrum disorders, developmental learning disorders, attention deficit hyperactivity disorder, tic disorders, and other neurodevelopmental disorders. With the improvement in the research level and the diagnosis and treatment techniques of NDDs, great progress has been made in the research on NDDs in children. This article reviews the research advances in NDDs, in order to further improve the breadth and depth of the understanding of NDDs in children among pediatricians.
Humans
;
Child
;
Neurodevelopmental Disorders/therapy*
;
Autism Spectrum Disorder/therapy*
;
Attention Deficit Disorder with Hyperactivity
6.Clinical and genetic analysis of two children with Neurodevelopmental disorder with hypotonia, stereotypic hand movements, and impaired language due to de novo variants of MEF2C gene.
Lulu YAN ; Danyan ZHUANG ; Youqu TU ; Yuxin ZHANG ; Yingwen LIU ; Yan HE ; Haibo LI
Chinese Journal of Medical Genetics 2023;40(10):1252-1256
OBJECTIVE:
To explore the clinical characteristics and genetic etiology for two children with Neurodevelopmental disorder with hypotonia, stereotypic hand movements, and impaired language (MEDHSIL).
METHODS:
Two children who had visited the Ningbo Women and Children's Hospital on October 15, 2021 were selected as the study subjects. Whole exome sequencing (WES) was carried out for both patients. Candidate variants were verified by Sanger sequencing of their family members.
RESULTS:
The two children were respectively found to harbor a heterozygous c.138delC (p.Ile47Serfs*42) variant and a c.833del (p.L278*) variant of the MEF2C gene. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were predicted to be pathogenic (PVS1+PS2+PM2_Supporting).
CONCLUSION
The c.138delC and c.833del variants of the MEF2C gene probably underlay the pathogenesis of MEDHSIL in the two children. Above findings have enriched the mutational spectrum of the MEF2C gene and enabled genetic counseling for their families.
Child
;
Humans
;
Family
;
Genetic Counseling
;
Language
;
MEF2 Transcription Factors/genetics*
;
Muscle Hypotonia/genetics*
;
Neurodevelopmental Disorders
7.Autosomal dominant neurodevelopmental disorders associated with KIF1A gene variants in 6 pediatric patients.
Jingqi LIN ; Niu LI ; Ru'en YAO ; Tingting YU ; Xiumin WANG ; Jian WANG
Journal of Zhejiang University. Medical sciences 2023;52(6):693-700
OBJECTIVES:
To analyze the clinical and genetic characteristics of children with autosomal dominant neurodevelopmental disorders caused by kinesin family member 1A (KIF1A) gene variation.
METHODS:
Clinical and genetic testing data of 6 children with KIF1A gene de novo heterozygous variation diagnosed in Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine from the year 2018 to 2020 were retrospectively analyzed. Pathogenic variants were identified based on whole exome sequencing, and verified by Sanger sequencing. Moreover, the effect of variants on three-dimensional structure and stability of protein was analyzed by bioinformatics.
RESULTS:
Among 6 patients there were 4 males and 2 females, and the age of consultation varied from 7 months to 18 years. All cases had varying degrees of motor developmental delay since childhood, and 4 of them had gait abnormalities or fell easily. In addition, 2 children were accompanied by delayed mental development, epilepsy and abnormal eye development. Genetic tests showed that all 6 cases had heterozygous de novo variations of KIF1A gene, including 4 missense mutations c.296C>T (p.T99M), c.761G>A (p.R254Q), c.326G>T (p.G109V), c.745C>G (p.L249V) and one splicing mutation c.798+1G>A, among which the last three variants have not been previously reported. Bioinformatics analysis showed that G109V and L249V may impair their interaction with the neighboring amino acid residues, thereby impacting protein function and reducing protein stability, and were assessed as "likely pathogenic". Meanwhile, c.798+1G>A may damage an alpha helix in the motor domain of the KIF1A protein, and was assessed as "likely pathogenic".
CONCLUSIONS
KIF1A-associated neurological diseases are clinically heterogeneous, with motor developmental delay and abnormal gait often being the most common clinical features. The clinical symptoms in T99M carriers are more severe, while those in R254Q carriers are relatively mild.
Male
;
Female
;
Humans
;
Child
;
Retrospective Studies
;
China
;
Mutation
;
Epilepsy/genetics*
;
Neurodevelopmental Disorders/genetics*
;
Kinesins/genetics*
8.The microbiota-gut-brain axis and neurodevelopmental disorders.
Qinwen WANG ; Qianyue YANG ; Xingyin LIU
Protein & Cell 2023;14(10):762-775
The gut microbiota has been found to interact with the brain through the microbiota-gut-brain axis, regulating various physiological processes. In recent years, the impacts of the gut microbiota on neurodevelopment through this axis have been increasingly appreciated. The gut microbiota is commonly considered to regulate neurodevelopment through three pathways, the immune pathway, the neuronal pathway, and the endocrine/systemic pathway, with overlaps and crosstalks in between. Accumulating studies have identified the role of the microbiota-gut-brain axis in neurodevelopmental disorders including autism spectrum disorder, attention deficit hyperactivity disorder, and Rett Syndrome. Numerous researchers have examined the physiological and pathophysiological mechanisms influenced by the gut microbiota in neurodevelopmental disorders (NDDs). This review aims to provide a comprehensive overview of advancements in research pertaining to the microbiota-gut-brain axis in NDDs. Furthermore, we analyzed both the current state of research progress and discuss future perspectives in this field.
Humans
;
Brain-Gut Axis
;
Autism Spectrum Disorder/metabolism*
;
Brain/metabolism*
;
Gastrointestinal Microbiome
;
Neurodevelopmental Disorders/metabolism*
9.Progress in Modeling Neural Tube Development and Defects by Organoid Reconstruction.
Neuroscience Bulletin 2022;38(11):1409-1419
It is clear that organoids are useful for studying the structure as well as the functions of organs and tissues; they are able to simulate cell-to-cell interactions, symmetrical and asymmetric division, proliferation, and migration of different cell groups. Some progress has been made using brain organoids to elucidate the genetic basis of certain neurodevelopmental disorders. Such as Parkinson's disease and Alzheimer's disease. However, research on organoids in early neural development has received insufficient attention, especially that focusing on neural tube precursors. In this review, we focus on the recent research progress on neural tube organoids and discuss both their challenges and potential solutions.
Humans
;
Organoids
;
Neural Tube
;
Neurodevelopmental Disorders/genetics*
;
Brain
;
Alzheimer Disease


Result Analysis
Print
Save
E-mail