1.Material basis and action mechanism of drug-containing serum of Modified Erxian Pill inhibiting macrophage pyroptosis
Siyuan LI ; Yuru WANG ; Ye XU ; Di GUO ; Nan NAN ; Yang LIU ; Jie ZHAO ; Huiqin HAO
Chinese Journal of Tissue Engineering Research 2025;29(19):4029-4037
BACKGROUND:Our previous study found that Modified Erxian Pill could alleviate inflammation in collagen-induced arthritis rats,but its mechanism needs to be further verified. OBJECTIVE:To analyze the components absorbed in the blood of Modified Erxian Pill,and observe the effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages. METHODS:(1)Analysis of components absorbed in the blood of Modified Erxian Pill:Ultra-high performance liquid chromatography-high resolution mass spectrometry was used to detect and identify Modified Erxian Pill and its components absorbed in the blood.(2)Effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages:Molecular docking technology was used to initially verify the sesquiterpenoids and NLRP3 in components absorbed in the blood of Modified Erxian Pill.J774A.1 macrophages were randomly divided into blank control group,lipopolysaccharide+adenosine triphosphate group,and lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill with low(2.5%),medium(5%),and high(10%)dose groups.The release of lactate dehydrogenase in the cell supernatant of each group was detected according to the kit instructions.The levels of interleukin-1β and interleukin-18 in cell supernatant were detected in each group by ELISA.The cell membrane damage was detected by Hoechst/PI staining.The expression levels of NLRP3,Caspase-1,GSDMD,and GSDMD-N protein in the cells of each group were detected by western blot assay. RESULTS AND CONCLUSION:(1)A total of 32 active components of Modified Erxian Pill were identified,and 21 components entered the blood.The main components into blood included a variety of sesquiterpenoids.(2)Molecular docking results showed that 3-O-Acetyl-13-deoxyphomenone,Incensol oxide,Atractylenolide III,Rupestonic acid,and 3,7-Dihydroxy-9,11-eremophiladien-8-one had good binding activity with NLRP3.(3)Compared with the blank control group,lactate dehydrogenase activity and the expression levels of interleukin-1β and interleukin-18 were significantly increased in cell supernatant of lipopolysaccharide+adenosine triphosphate group(P<0.001).Hoechst/PI staining showed that the number of PI-positive cells was significantly increased.After the intervention of lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group,all of them showed different degrees of reduction.(4)Compared with the blank control group,NLRP3,Caspase-1,GSDMD,and GSDMD-N protein expression levels were significantly increased in the lipopolysaccharide+adenosine triphosphate group(P<0.05).Compared with lipopolysaccharide+adenosine triphosphate group,the protein expressions of NLRP3,Caspase-1,GSDMD,and GSDMD-N were significantly decreased in the lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group(P<0.05),and had a certain dose dependence.These findings verify that the drug-containing serum of Modified Erxian Pill may inhibit the pyroptosis of J774A.1 macrophages by regulating the NLRP3/Caspase-1/GSDMD pathway.
2.An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment
Hao-Ran CHEN ; Nan ZHOU ; Yu-Da LIU ; Li-Hua PENG
Biomolecules & Therapeutics 2025;33(2):399-407
Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both in vitro and in vivo. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. In vivo, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.
3.An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment
Hao-Ran CHEN ; Nan ZHOU ; Yu-Da LIU ; Li-Hua PENG
Biomolecules & Therapeutics 2025;33(2):399-407
Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both in vitro and in vivo. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. In vivo, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.
4.An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment
Hao-Ran CHEN ; Nan ZHOU ; Yu-Da LIU ; Li-Hua PENG
Biomolecules & Therapeutics 2025;33(2):399-407
Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both in vitro and in vivo. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. In vivo, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.
5.External validation of the model for predicting high-grade patterns of stage ⅠA invasive lung adenocarcinoma based on clinical and imaging features
Yu RONG ; Nianqiao HAN ; Yanbing HAO ; Jianli HU ; Yajin NIU ; Lan ZHANG ; Yuehua DONG ; Nan ZHANG ; Junfeng LIU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1096-1104
Objective To externally validate a prediction model based on clinical and CT imaging features for the preoperative identification of high-grade patterns (HGP), such as micropapillary and solid subtypes, in early-stage lung adenocarcinoma, in order to guide clinical treatment decisions. Methods This study conducted an external validation of a previously developed prediction model using a cohort of patients with clinical stage ⅠA lung adenocarcinoma from the Fourth Hospital of Hebei Medical University. The model, which incorporated factors including tumor size, density, and lobulation, was assessed for its discrimination, calibration performance, and clinical impact. Results A total of 650 patients (293 males, 357 females; age range: 30-82 years) were included. The validation showed that the model demonstrated good performance in discriminating HGP (area under the curve>0.7). After recalibration, the model's calibration performance was improved. Decision curve analysis (DCA) indicated that at a threshold probability>0.6, the number of HGP patients predicted by the model closely approximated the actual number of cases. Conclusion This study confirms the effectiveness of a clinical and imaging feature-based prediction model for identifying HGP in stage ⅠA lung adenocarcinoma in a clinical setting. Successful application of this model may be significant for determining surgical strategies and improving patients' prognosis. Despite certain limitations, these findings provide new directions for future research.
6.Preparation,characterization and tissue distribution of polyethylene glycol-modified Curcumin solid lipid nanoparticle inhalable micropowder
Nan LI ; Zi WANG ; Di HAO ; Lingyu KONG ; Xu LI
China Pharmacy 2025;36(19):2387-2392
OBJECTIVE To prepare polyethylene glycol (PEG)-modified flower lactose (FL) loaded Curcumin (Cur) solid lipid nanoparticle (SLN) inhalable micropowder (referred to as “PEG-Cur-FL”). METHODS PEG-Cur-FL was prepared by the solvent emulsification diffusion low-temperature solidification method, and its encapsulation efficiency, drug loading capacity, powder properties, aerodynamic particle size, in vitro deposition properties, and in vitro release characteristics were characterized. The mice were divided into Cur-SLN-FL (unmodified with PEG) group and PEG-Cur-FL group, with 55 mice in each group. Both groups of mice were given a single inhalation of 5 mg/kg (calculated as Cur) of the corresponding drug micropowder through an air tube. At 0.25, 0.5, 1, 2, 4, 6, 8, 12, 24, 48 and 72 hours after administration, eyeballs were removed to collect blood and tracheal, lung, liver and kidney tissues were separated. The mass concentration of Cur in mouse plasma and various tissue samples was measured, and the tissue distribution and retention of the drug were analyzed. RESULTS The encapsulation efficiency and drug loading capacity of PEG-Cur-FL were (86.2±1.8)% and (4.2±0.2)%, respectively; the bulk density and tap density were (0.24±0.01) g/cm3 and (0.30±0.01) g/cm3, respectively; the aerodynamic particle size was (2.74±0.64) μm; the in vitro effective site deposition rate (secondary drug deposition rate) was (45.07±2.79)%. Compared with Cur raw materials, Cur-SLN- FL and PEG-Cur-FL had sustained release effects under both leakage and non-leakage conditions, and PEG-Cur-FL had a smoother sustained release in artificial lung fluid, with release characteristics consistent with the Weibull model. The results of in vivo distribution showed that the drug concentration in the lung tissue of PEG-Cur-FL group was significantly lower than that of Cur- SLN-FL group during the same period after 1 hour of administration, while the drug concentration in the lung tissue at 4 to 48 hours was significantly higher than that of Cur-SLN-FL group during the same period (P<0.05); the plasma drug concentrations of the PEG-Cur-FL group at all time points from 0.25 to 12 hours were significantly lower than those of the Cur-SLN-FL group during the same period (P<0.05), and the drug concentrations in liver and kidney tissues were also lower than those of the Cur-SLN-FL group during the same period (P<0.05). CONCLUSIONS PEG-Cur-FL is prepared successfully; the inhalable micropowder has good inhalability and release performance; after administration through the trachea, the effective concentration of Cur in lung tissue can be increased, while reducing its plasma drug concentration and drug distribution concentration in non-target organs.
7.Drug resistance of multidrug-resistant organism in hospitalized children at a children's hospital in Hebei Province
SUN Ling ; LIU Yuanqing ; LIU Xinguang ; ZHANG Nan ; WEN Chan ; HAO Jianzong ; LI Mei
Journal of Preventive Medicine 2025;37(6):616-621
Objective:
To analyze the drug resistance of multidrug-resistant organism (MDRO) among hospitalized children in a children's hospital in Hebei Province from 2019 to 2023, so as to provide the basis for the rational clinical application of antibacterial drugs.
Methods:
Specimens including sputum, blood, urine, pus, bronchoalveolar lavage fluid, secretions, pleural fluid, and peritoneal fluid of hospitalized children from January 2019 to December 2023 were collected. Pathogen identification and drug susceptibility tests were performed on methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum β-lactamase-producing Escherichia coli (ESBLs-EC), extended-spectrum β-lactamase-producing Klebsiella pneumoniae (ESBLs-KP), carbapenem-resistant Klebsiella pneumoniae (CRKP), carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Pseudomonas aeruginosa (CRPA) and carbapenem-resistant Escherichia coli (CREC). The department distribution, specimen distribution, and drug resistance of MDROs were analyzed.
Results:
A total of 279 086 samples were submitted for testing, with 3 512 MDROs detected. Among these, MRSA and ESBLs-EC had relatively high detection rates of 35.76% and 41.50%, respectively. In the internal medicine pediatric patients, 1 869 MDROs were detected, accounting for 53.22%. The main departments were respiratory medicine, neonatology, and intensive care. In the surgical department, 1 643 MDROs were detected, accounting for 46.78%, with the main sources being general surgery and cardiac surgery. The highest numbers of MDROs were detected in sputum, pus, and urine samples, with 1 372, 527, and 494 isolates, representing 39.07%, 15.01%, and 14.07%, respectively. The resistance rates of MRSA to penicillin, oxacillin, and erythromycin were between 81.76% and 100.00%. ESBLs-EC and ESBLs-KP had a resistance rate of 100.00% to ceftriaxone. CRKP had a resistance rate of 100.00% to ampicillin/sulbactam and imipenem. CRAB had a resistance rate of 100.00% to cefoxitin, imipenem, and meropenem. CRPA had a resistance rate of 100.00% to ampicillin/sulbactam, ceftriaxone, cefoxitin, and imipenem. CREC had a resistance rate of 100.00% to imipenem.
Conclusions
In a children's hospital in Hebei Province, infections with MDROs among hospitalized pediatric patients are primarily caused by MRSA and ESBLs-EC. These infections are mainly distributed in the departments of respiratory medicine, neonatology, intensive care, general surgery, and cardiac surgery, with the highest detection rates in sputum, pus, and urine samples. Additionally, MRSA, ESBLs-EC, ESBLs-KP, CRKP, CRAB, CRPA, and CREC show high resistance rate to most antimicrobial agents.
8.Advances in Salmonella -mediated targeted tumor therapy
Zhao-rui LÜ ; Dong-yi LI ; Yu-yang ZHU ; He-qi HUANG ; Hao-nan LI ; Zi-chun HUA
Acta Pharmaceutica Sinica 2024;59(1):17-24
italic>Salmonella has emerged as a promising tumor-targeting strategy in recent years due to its good tumor targeting ability and certain safety. In order to further optimize its therapeutic effect, scientists have tried to modify
9.Effects of cinbufagin on proliferation,migration and invasion of human colon cancer cells via JAK2/STAT3 pathway
Jia CHEN ; Qi XIA ; Yi-Nan LI ; Yu-Jie HE ; Ze-Ting YUAN ; Yue LI ; Pei-Hao YIN
The Chinese Journal of Clinical Pharmacology 2024;40(12):1764-1768
Objective To investigate the effects of cinbufagin(CB)on the proliferation,migration and invasion ability as well as epithelial-mesenchymal transition(EMT)of human colon cells HCT116.Methods Logarithmically grown HCT116 cells were randomly divided into blank group and experimental-L,-M,-H groups;the blank group did not receive any treatment(0 nmol·L-1),and experimental-L,-M,-H groups were cultured in 1 640 medium containing 17.5,35 and 70 nmol·L-1 cinbufagin for 48 h.Cell counting kit-8(CCK-8)was used to detect the effect of cinbufagin on the survival rate of HCT116 cells;cloning assay was used to detect the effect of cinbufagin on the proliferation of HCT116 cells;cell scratch assay and Transwell assay were used to detect the effect of cinbufagin on the migration and invasive ability of HCT116 cells;Western blot was used to detect the expression levels of janus kinase 2(JAK2)/signal transducers and activators of transcription 3(STAT3)pathway and EMT-related proteins of HCT116 cells.Results The number of clone formation in blank group and experimental-L,-M,-H groups were 122.67±24.42,73.67±15.82,44.33±4.51 and 21.67±1.53;the rates of migration of scratches were(44.64±9.15)%,(26.91±2.94)%,(19.28±1.52)%and(6.33±2.30)%;the number of invaded cells were 120.33±1.15,58.33±9.07,33.33±1.53 and 18.33±3.21;the relative protein expression of phosphorylated JAK-2(p-JAK-2)/JAK-2 were 1.02±0.06,0.94±0.05,0.75±0.22 and 0.49±0.22;relative protein expression of phosphorylated STAT3(p-STAT3)/STAT3 were 0.89±0.10,0.72±0.04,0.65±0.06 and 0.52±0.18;relative protein expression of E-cadherin were 0.30±0.14,0.41±0.13,0.49±0.14 and 0.69±0.17;relative protein expression of N-cadherin were 0.96±0.11,0.78±0.04,0.69±0.12 and 0.40±0.15;Snail relative protein expression were 0.89±0.08,0.62±0.15,0.44±0.15 and 0.27±0.09;Vimentin relative protein expression were 0.92±0.09,0.76±0.13,0.63±0.01 and 0.43±0.09,respectively.The above indexes in experimental-H group showed statistically significant differences compared to blank group(all P<0.05).Conclusion HCT116 can inhibit the invasion and metastasis of human colorectal cancer cells HCT116 by inhibiting epithelial-mesenchymal transition through JAK2/STAT3 pathway.
10.Research progress on drug resistance mechanism of sorafenib in radioiodine refractory differentiated thyroid cancer
En-Tao ZHANG ; Hao-Nan ZHU ; Zheng-Ze WEN ; Cen-Hui ZHANG ; Yi-Huan ZHAO ; Ying-Jie MAO ; Jun-Pu WU ; Yu-Cheng JIN ; Xin JIN
The Chinese Journal of Clinical Pharmacology 2024;40(13):1986-1990
Most patients with differentiated thyroid cancer have a good prognosis after radioiodine-131 therapy,but a small number of patients are insensitive to radioiodine-131 therapy and even continue to develop disease.At present,some targeted drugs can improve progression-free survival in patients with radioactive iodine-refractory differentiated thyroid cancer(RAIR-DTC),such as sorafenib and levatinib,have been approved for the treatment of RAIR-DTC.However,due to the presence of primary and acquired drug resistance,drug efficacy in these patients is unsatisfactory.This review introduces the acquired drug resistance mechanism of sorafenib in the regulation of mitogen-activated protein kinase(MAPK)and phosphatidylinositol-3-kinase(PI3K)pathways and proposes related treatment strategies,in order to provide a reference for similar drug resistance mechanism of sorafenib and effective treatment of RAIR-DTC.


Result Analysis
Print
Save
E-mail