1.Potassium dehydroandrographolide succinate regulates the MyD88/CDH13 signaling pathway to enhance vascular injury-induced pathological vascular remodeling.
Qiru GUO ; Jiali LI ; Zheng WANG ; Xiao WU ; Zhong JIN ; Song ZHU ; Hongfei LI ; Delai ZHANG ; Wangming HU ; Huan XU ; Lan YANG ; Liangqin SHI ; Yong WANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):62-74
Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.
Mice
;
Rats
;
Animals
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Remodeling
;
Cell Proliferation
;
Vascular System Injuries/pathology*
;
Carotid Artery Injuries/pathology*
;
Molecular Docking Simulation
;
Muscle, Smooth, Vascular
;
Cell Movement
;
Mice, Inbred C57BL
;
Signal Transduction
;
Succinates/pharmacology*
;
Potassium/pharmacology*
;
Cells, Cultured
;
Diterpenes
;
Cadherins
2.Research progress on the mechanism of phenotypic transformation of pulmonary artery smooth muscle cells induced by hypoxia.
Journal of Zhejiang University. Medical sciences 2023;51(6):750-757
Phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs) is a key factor in pulmonary vascular remodeling. Inhibiting or reversing phenotypic transformation can inhibit pulmonary vascular remodeling and control the progression of hypoxic pulmonary hypertension. Recent studies have shown that hypoxia causes intracellular peroxide metabolism to induce oxidative stress, induces multi-pathway signal transduction, including those related to autophagy, endoplasmic reticulum stress and mitochondrial dysfunction, and also induces non-coding RNA regulation of cell marker protein expression, resulting in PASMCs phenotypic transformation. This article reviews recent research progress on mechanisms of hypoxia-induced phenotypic transformation of PASMCs, which may be helpful for finding targets to inhibit phenotypic transformation and to improve pulmonary vascular remodeling diseases such as hypoxia-induced pulmonary hypertension.
Humans
;
Pulmonary Artery
;
Hypertension, Pulmonary
;
Vascular Remodeling/genetics*
;
Hypoxia/genetics*
;
Myocytes, Smooth Muscle
;
Cell Proliferation/physiology*
;
Cells, Cultured
;
Cell Hypoxia/genetics*
3.Oral pathogen aggravates atherosclerosis by inducing smooth muscle cell apoptosis and repressing macrophage efferocytosis.
Hanyu XIE ; Ziyue QIN ; Ziji LING ; Xiao GE ; Hang ZHANG ; Shuyu GUO ; Laikui LIU ; Kai ZHENG ; Hongbing JIANG ; Rongyao XU
International Journal of Oral Science 2023;15(1):26-26
Periodontitis imparting the increased risk of atherosclerotic cardiovascular diseases is partially due to the immune subversion of the oral pathogen, particularly the Porphyromonas gingivalis (P. gingivalis), by inducing apoptosis. However, it remains obscure whether accumulated apoptotic cells in P. gingivalis-accelerated plaque formation are associated with impaired macrophage clearance. Here, we show that smooth muscle cells (SMCs) have a greater susceptibility to P. gingivalis-induced apoptosis than endothelial cells through TLR2 pathway activation. Meanwhile, large amounts of miR-143/145 in P.gingivalis-infected SMCs are extracellularly released and captured by macrophages. Then, these miR-143/145 are translocated into the nucleus to promote Siglec-G transcription, which represses macrophage efferocytosis. By constructing three genetic mouse models, we further confirm the in vivo roles of TLR2 and miR-143/145 in P. gingivalis-accelerated atherosclerosis. Therapeutically, we develop P.gingivalis-pretreated macrophage membranes to coat metronidazole and anti-Siglec-G antibodies for treating atherosclerosis and periodontitis simultaneously. Our findings extend the knowledge of the mechanism and therapeutic strategy in oral pathogen-associated systemic diseases.
Animals
;
Mice
;
Endothelial Cells
;
Toll-Like Receptor 2
;
Macrophages
;
Apoptosis
;
Atherosclerosis
;
Myocytes, Smooth Muscle
;
MicroRNAs
4.Mechanism of Notch3 signaling pathway regulating the differentiation of aortic dissection vascular stem cells into smooth muscle cells.
Yichi HAN ; Haiwei HE ; Xin LI
Chinese Critical Care Medicine 2023;35(5):503-508
OBJECTIVE:
To explore whether the differentiation of vascular stem cells (VSC) into smooth muscle cells (SMC) in aortic dissection (AD) is dysregulated, and to verify the role of Notch3 pathway in this process.
METHODS:
Aortic tissues were obtained from AD patients undergoing aortic vascular replacement and heart transplant donors at Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital Affiliated to Southern Medical University. VSC were isolated by enzymatic digestion and c-kit immunomagnetic beads. The cells were divided into normal donor-derived VSC group (Ctrl-VSC group) and AD-derived VSC group (AD-VSC group). The presence of VSC in the aortic adventitia was detected by immunohistochemical staining, and VSC was identified by stem cell function identification kit. The differentiation model of VSC into SMC established in vitro was induced by transforming growth factor-β1 (10 μg/L) for 7 days. They were divided into normal donor VSC-SMC group (Ctrl-VSC-SMC group), AD VSC-SMC group (AD-VSC-SMC group) and AD VSC-SMC+Notch3 inhibitor DAPT group (AD-VSC-SMC+DAPT group,DAPT 20 μmol/L was added during differentiation induction). The expression of contractile marker Calponin 1 (CNN1) in SMC derived from aortic media and VSC were detected by immunofluorescence staining. The protein expressions of contractile markers α-smooth muscle actin (α-SMA), CNN1 as well as Notch3 intracellular domain (NICD3) in SMC derived from aortic media and VSC were detected by Western blotting.
RESULTS:
Immunohistochemical staining showed there was a population of c-kit-positive VSC in the adventitia of aortic vessels, and VSC from both normal donors and AD patients had the ability to differentiate into adipocytes and chondrocytes. Compared with normal donor vascular tissue, the expressions of SMC markers α-SMA and CNN1 of tunica media contraction in AD were down-regulated (α-SMA/β-actin: 0.40±0.12 vs. 1.00±0.11, CNN1/β-actin: 0.78±0.07 vs. 1.00±0.14, both P < 0.05), while the protein expression of NICD3 was up-regulated (NICD3/GAPDH: 2.22±0.57 vs. 1.00±0.15, P < 0.05). Compared with Ctrl-VSC-SMC group, the expressions of contractile SMC markers α-SMA and CNN1 were down-regulated in AD-VSC-SMC group (α-SMA/β-actin: 0.35±0.13 vs. 1.00±0.20, CNN1/β-actin: 0.78±0.06 vs. 1.00±0.07, both P < 0.05), the protein expression of NICD3 was up-regulated (NICD3/GAPDH: 22.32±1.22 vs. 1.00±0.06, P < 0.01). Compared with AD-VSC-SMC group, the expressions of contractile SMC markers α-SMA, CNN1 were up-regulated in AD-VSC-SMC+DAPT group (α-SMA/β-actin: 1.70±0.07 vs. 1.00±0.15, CNN1/β-actin: 1.62±0.03 vs. 1.00±0.02, both P < 0.05).
CONCLUSIONS
Dysregulation of VSC differentiation into SMC occurs in AD, while inhibition of Notch3 pathway activation can restore the expression of contractile proteins in VSC-derived SMC in AD.
Humans
;
Actins
;
Platelet Aggregation Inhibitors
;
Signal Transduction
;
Aortic Dissection
;
Cell Differentiation
;
Myocytes, Smooth Muscle
;
Stem Cells
6.Effects of electroacupuncture on gait and proliferation and differentiation of muscle satellite cell in rats with acute blunt trauma of gastrocnemius muscle.
Yu-Ting HUANG ; Jia-Yan CHEN ; Lin-Yao ZHENG ; Yue-Yue LIU ; Xiu-Bing TONG ; Si-Yang XIAO ; Yu KAN ; Yan-Ping FANG ; Xiang-Hong JING ; Jun LIAO
Chinese Acupuncture & Moxibustion 2023;43(9):982-989
OBJECTIVE:
To observe the effects of electroacupuncture on threshold of pain, gait, proliferation and differentiation of muscle satellite cell in rats with acute blunt trauma of gastrocnemius muscle, and to explore the possible mechanism of electroacupuncture in promoting the repair of acute injury of skeletal muscle.
METHODS:
A total of 48 SD rats were randomly divided into a blank group (6 rats), a model group (24 rats) and an electroacupuncture group (18 rats). In the model group and the electroacupuncture group, the model of acute blunt trauma of gastrocnemius muscle was established by self-made impactor. In the electroacupuncture group, electroacupuncture was applied at "Chengshan" (BL 57) and "Yanglingquan" (GB 34) on the right side, with disperse-dense wave, in frequency of 2 Hz/100 Hz, once a day, 30 min each time. Electroacupuncture intervention was performed for 3, 7 and 14 days according to the sampling time. On the 1st, 3rd, 7th and 14th days after modeling, the mechanical withdrawal pain threshold of hindfoot was detected by Von Frey method; the standing time and the maximum contact area of the right hindfoot were recorded by Cat Walk XTTM animal gait analysis instrument; the morphology of the right gastrocnemius muscle and the number of inflammatory cells were observed by HE staining; the positive expression of paired box gene 7 (Pax7) and myogenic differentiation (MyoD) of the right gastrocnemius muscle was detected by immunofluorescence.
RESULTS:
After modeling, the muscle fiber rupture and massive infiltration of red blood cells and inflammatory cells were observed in the right gastrocnemius muscle; after electroacupuncture intervention, the morphology of muscle fiber was intact and the infiltration of inflammatory cells was improved. Compared with the blank group, in the model group, the differences of mechanical withdrawal pain threshold between the left and right foot were increased (P<0.05), the standing time was shortened and the maximum contact area of the right hindfoot was decreased (P<0.05), the number of inflammatory cells and the positive expression of Pax7 and MyoD of the right gastrocnemius muscle were increased (P<0.05) on the 1st, 3rd, 7th and 14th days after modeling. Compared with the model group, in the electroacupuncture group, the differences of mechanical withdrawal pain threshold were decreased (P<0.05), the standing time was prolonged (P<0.05), the number of inflammatory cells of right gastrocnemius muscle was decreased (P<0.05) on the 7th and 14th days after modeling; the maximum contact area of the right hindfoot was increased (P<0.05), the positive expression of MyoD of the right gastrocnemius muscle was increased (P<0.05) on the 3rd, 7th and 14th days after modeling; the positive expression of Pax7 of the right gastrocnemius muscle was increased (P<0.05) on the 3rd day after modeling.
CONCLUSION
Electroacupuncture can effectively improve the pain threshold and gait in rats with acute blunt trauma of gastrocnemius muscle, and promote the repair of skeletal muscle injury, the mechanism may be related to the up-regulation of Pax7 and MyoD, so as to promoting the proliferation and differentiation of muscle satellite cell.
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Satellite Cells, Skeletal Muscle
;
Electroacupuncture
;
Muscle, Skeletal
;
Gait
;
Wounds, Nonpenetrating
;
Pain
;
Cell Differentiation
;
Cell Proliferation
7.Chronic psychological stress exacerbates aortic medial calcification via glucocorticoids.
Yan-Qing LI ; Pan-Na HUANG ; Hao-Zhe ZHANG ; Lu-Yu HAN ; Ruo-Xiang MIAO ; Wan-Yun FENG ; Hua PAN ; Lin FENG ; Xin-Hua WU ; Juan HE ; Xu TENG ; Xiao-Ning WANG
Acta Physiologica Sinica 2022;74(6):927-938
Chronic psychological stress can promote vascular diseases, such as hypertension and atherosclerosis. This study aims to explore the effects and mechanism of chronic psychological stress on aortic medial calcification (AMC). Rat arterial calcification model was established by nicotine gavage in combination with vitamin D3 (VitD3) intramuscular injection, and rat model of chronic psychological stress was induced by humid environment. Aortic calcification in rats was evaluated by using Alizarin red staining, aortic calcium content detection, and alkaline phosphatase (ALP) activity assay. The expression levels of the related proteins, including vascular smooth muscle cells (VSMCs) contractile phenotype marker SM22α, osteoblast-like phenotype marker RUNX2, and endoplasmic reticulum stress (ERS) markers (GRP78 and CHOP), were determined by Western blot. The results showed that chronic psychological stress alone induced AMC in rats, further aggravated AMC induced by nicotine in combination with VitD3, promoted the osteoblast-like phenotype transformation of VSMCs and aortic ERS activation, and significantly increased the plasma cortisol levels. The 11β-hydroxylase inhibitor metyrapone effectively reduced chronic psychological stress-induced plasma cortisol levels and ameliorated AMC and aortic ERS in chronic psychological stress model rats. Conversely, the glucocorticoid receptor agonist dexamethasone induced AMC, promoted AMC induced by nicotine combined with VitD3, and further activated aortic ERS. The above effects of dexamethasone could be inhibited by ERS inhibitor 4-phenylbutyrate. These results suggest that chronic psychological stress can lead to the occurrence and development of AMC by promoting glucocorticoid synthesis, which may provide new strategies and targets for the prevention and control of AMC.
Rats
;
Animals
;
Glucocorticoids/metabolism*
;
Rats, Sprague-Dawley
;
Nicotine/metabolism*
;
Hydrocortisone/metabolism*
;
Muscle, Smooth, Vascular
;
Dexamethasone/metabolism*
;
Vascular Calcification/metabolism*
;
Myocytes, Smooth Muscle/metabolism*
;
Cells, Cultured
8.Bioinformatics analysis identifies aging/senescence-induced genes in calcified plaques.
Hai-Peng YAO ; Yong-Jiang QIAN ; Zhong-Qun WANG
Acta Physiologica Sinica 2022;74(6):939-948
Vascular calcification is an important pathophysiological basis of cardiovascular disease with its underlying mechanism unclear. In recent years, studies have shown that aging is one of the risk factors for vascular calcification. The purpose of this study was to investigate the microenvironmental characteristics of vascular calcification, identify aging/senescence-induced genes (ASIGs) closely related to calcified plaques, and explore the evolution trajectory of vascular calcification cell subsets. Based on the bioinformatics method, the single cell transcriptome sequencing data (Gene Expression Omnibus: GSE159677) of carotid artery samples from 3 patients undergoing carotid endarterectomy were grouped and annotated. Vascular calcification-related aging genes were identified by ASIGs data set. The pseudotime trend of ASIGs in cell subsets was analyzed by Monocle 3, and the evolution of vascular calcification cells was revealed. After quality control, all cells were divided into 8 cell types, including B cells, T cells, smooth muscle cells, macrophages, endothelial cells, fibroblasts, mast cells, and progenitor cells. Ten ASIGs related to vascular calcification were screened from the data set of ASIGs, which include genes encoding complement C1qA (C1QA), superoxide dismutase 3 (SOD3), lysozyme (LYZ), insulin-like growth factor binding protein-7 (IGFBP7), complement C1qB (C1QB), complement C1qC (C1QC), Caveolin 1 (CAV1), von Willebrand factor (vWF), clusterin (CLU), and αB-crystallin (CRYAB). Pseudotime analysis showed that all cell subsets were involved in the progression of vascular calcification, and these ASIGs may play an important role in cell evolution. In summary, AGIS plays an important role in the progression of vascular calcification, and these high expression genes may provide ideas for early diagnosis and treatment of vascular calcification.
Humans
;
Endothelial Cells
;
Muscle, Smooth, Vascular
;
Aging
;
Vascular Calcification/metabolism*
;
Computational Biology
;
Myocytes, Smooth Muscle/metabolism*
10.Salidroside inhibits phenotypic transformation of rat pulmonary artery smooth muscle cells induced by hypoxia.
Jia-Qi MAO ; Chuan-Chuan LIU ; Yu-Wei ZHANG ; Qing-Qing ZHANG ; Hong LIU ; Lan MA
China Journal of Chinese Materia Medica 2022;47(4):1024-1030
This study investigated the effect of salidroside on phenotypic transformation of rat pulmonary artery smooth muscle cells(PASMCs) induced by hypoxia. Rat pulmonary arteries were isolated by tissue digestion and PASMCs were cultured. The OD values of cells treated with salidroside at different concentrations for 48 hours were measured by cell counting kit-8(CCK-8) to determine the appropriate concentration range of salidroside. The cells were divided into a normal(normoxia) group, a model(hypoxia) group, and three hypoxia + salidroside groups(40, 60, and 80 μg·mL~(-1)). Quantitative real-time PCR(qRT-PCR) was used to detect the mRNA expression of cell contractile markers in each group, such as α-smooth muscle actin(α-SMA), smooth muscle 22(SM22), and calcium-binding protein(calponin), and synthetic marker vimentin. The expression levels of cell phenotypic markers and proliferating cell nuclear antigen(PCNA) were detected by Western blot. The proliferation of cells in each group was detected by the 5-ethynyl-2'-deoxyuridine(EdU) assay. Cell migration was measured by Transwell assay. As revealed by results, compared with the normal group, the model group showed decreased mRNA and protein expression of contractile phenotypic markers of PASMCs and increased mRNA and protein expression of synthetic markers. Compared with the conditions in the model group, salidroside could down-regulate the mRNA and protein expression of synthetic markers in PASMCs and up-regulated the mRNA and protein expression of contractile phenotypic markers. Compared with the normal group, the model group showed potentiated proliferation and migration. Compared with the model group, the hypoxia + salidroside groups showed blunted proliferation and migration of cells after phenotypic transformation. The results suggest that salidroside can inhibit the expression of synthetic markers in PASMCs and promote the expression of contractile markers to inhibit the hypoxia-induced phenotypic transformation of PASMCs. The mechanism of salidroside in inhibiting the proliferation and migration of PASMCs is related to the inhibition of the phenotypic transformation of PASMCs.
Animals
;
Cell Proliferation
;
Cells, Cultured
;
Glucosides
;
Hypoxia
;
Myocytes, Smooth Muscle
;
Phenols
;
Pulmonary Artery
;
Rats

Result Analysis
Print
Save
E-mail