1.Exploration of predicting occupational injury severity based on LightGBM model and model interpretability method
Youhua MO ; Peng ZHANG ; YiShuo GU ; Xiaojun ZHU ; Jingguang FAN
Journal of Environmental and Occupational Medicine 2025;42(2):157-164
Background Light gradient boosting machine (LightGBM) has become a popular choice in prediction models due to its high efficiency and speed. However, the "black box" issues in machine learning models lead to poor model interpretability. At present, few studies have evaluated the severity of occupational injuries from the perspective of LightGBM model and model interpretability. Objective To evaluate the application value of LightGBM models and model interpretability methods in occupational injury prediction. Methods The Mine Safety and Health Administration (MSHA) occupational injury data set of mining industry workers from 1983 to 2022 was used. Injury severity (death/fatal occupational injury and permanent/partial disability) was used as the outcome variable, and the predictor variables included the month of occurrence, age, sex, time of accident, time since beginning of shift, accident time interval from shift start, total experience, total mining experience, experience at this mine, cause of injury, accident type, activity of injury, source of injury, body part of injury, work environment type, product category, and nature of injury. Feature sets were screened using least absolute shrinkage and selection operator (Lasso) regression. A LightGBM model was then employed to predict occupational injury, with area under curve (AUC) of the model serving as the primary evaluation metric; an AUC closer to 1 indicates better predictive performance of the model. The interpretability of the model was evaluated using Shapley additive explanations (SHAP). Results Through Lasso regression, 7 key influencing factors were identified, including accident time interval from shift start, experience at this mine, cause of injury, accident type, body part of injury, nature of injury, and work environment type. A LightGBM model, constructed based on feature selection via Lasso regression, demonstrated good predictive performance with an AUC value of
2.EGCG Promotes Aβ Clearance of Microglia Through Blockage of the HDAC6-PI3K/AKT/mTOR Signalling Axis Followed by Autophagy Activation
Yu LIN ; Kaiwen HUANG ; Honghai HONG ; Dan ZHU ; Yousheng MO ; Dongli LI ; Shuhuan FANG
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(3):486-497
ObjectiveTo clarify whether epigallocatechin gallate (EGCG) is involved in the clearance of amyloid β-protein (Aβ) and autophagy induction by microglia, so as to explore the potential mechanisms of EGCG in the prevention and treatment of Alzheimer's disease (AD). MethodsSix-month-old APP/PS1 mice were randomly divided into model and EGCG groups, with some additional wild type (WT) mice as the control group, each group consisting of 15 mice. The EGCG group received continuous gavage administration[5 mg/(kg·d)] for 8 weeks, followed by the open field test and Y-maze to assess the learning and memory abilities of the mice. Thioflavin-S staining was used to evaluate the content and distribution of amyloid β-protein (Aβ)in the brain parenchyma of the mice, and immunofluorescence was employed to detect the expression levels of Aβ1-42, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule 1 (Iba1) in the hippocampal tissue of the mice. Additionally, N9 mouse microglial cells were induced with 20 µmol/L Aβ1-42, and the cell viability was measured after treatment with different concentrations of EGCG (5 µmol/L, 10 µmol/L, 20 µmol/L). Western blotting was used to detect the levels of Aβ1-42, low density lipoprotein receptor-related protein 1(LRP1), receptor for advanced glycation endproducts (RAGE), amyloid precursor protein (APP), insulin degrading enzyme (IDE), neprilysin (NEP), microtubule associated protein 1 hydrogen chain 3(LC3)-Ⅱ/LC3-Ⅰ, phosphatidylinositol 3-hydroxy kinase(PI3K), p-PI3K, protein kinase B (AKT), p-AKT, mammalian target of rapamycin (mTOR), p-mTOR, and histone deacetylase 6(HDAC6). Finally, through the co-culture of microglial cells and neuronal SH-SY5Y cells, cell viability and Caspase-3 levels were measured to verify the protective effect of EGCG-mediated Aβ clearance on neurons. ResultsEGCG increased the activity time and frequency of APP/PS1 mice in the central area of the open field (P<0.05), and enhanced the percentage of alternation in the Y-maze test (P<0.01); EGCG reduced Aβ deposition in the hippocampal tissue of APP/PS1 mice and increased the number of microglia; in vitro experiments showed that EGCG improved the survival rate of Aβ-induced N9 cells (P<0.01), upregulated RAGE activity (P<0.05), and promoted the internalization and phagocytosis of Aβ (P<0.01). ECGC activated microglial autophagy by downregulating the level of HDAC6 (P<0.05), inhibiting the phosphorylation of PI3K, AKT, mTOR (P<0.001), and increasing the LC3-Ⅱ/LC3-I ratio (P<0.001); EGCG improved the survival rate of SH-SY5Y cells (P<0.05) and reduced the activity of Caspase-3 (P<0.01) by clearing Aβ1-42 through microglia, and had a protective effect on neurons. ConclusionEGCG activates microglial autophagy to clear Aβ by targeting and inhibiting the HDAC6-PI3K/AKT/mTOR axis.
3.Effect of Scutellariae Radix Combined with EGFR-TKIs on Non-small Cell Lung Cancer
Yaya YU ; Chenjing LEI ; Zhenzhen XIAO ; Qi MO ; Changju MA ; Lina DING ; Yadong CHEN ; Yanjuan ZHU ; Haibo ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):106-115
ObjectiveTo investigate the effects of Scutellariae Radix combined with epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) on cell proliferation, apoptosis, cancer stem cell (CSC) marker expression, and metabolism in non-small cell lung cancer (NSCLC) cells. MethodsThe anti-tumor effects of Scutellariae Radix and EGFR-TKIs (gefitinib or osimertinib) in NSCLC cells were evaluated using the cell counting kit-8 (CCK-8) and Annexin V-FITC/propidium iodide (PI) double staining apoptosis assay. The activity of Scutellariae Radix and EGFR-TKIs in three-dimensional (3D) cultures of NSCLC cells was assessed using the CellTiter-Glo® 3D cell viability assay. The mRNA and protein expression levels of CSC markers, sex determining region y box protein 2 (SOX2) and aldehyde dehydrogenase 1 family member A1 (ALDH1A1), were detected by quantitative real-time polymerase chain reaction (Real-time PCR) and Western blot, respectively. Changes in intracellular reactive oxygen species (ROS) levels were detected by ROS staining, and the redox ratio was detected by femtosecond laser labeling free imaging (FLI). ResultsUnder both two-dimensional (2D) and 3D culture conditions, compared with the blank group and EGFR-TKI group, the combination group showed significantly reduced cell viability and increased apoptosis rate (P<0.05). Compared with the EGFR-TKI group, the mRNA and protein levels of CSC markers were significantly downregulated in the combination group (P<0.05). Additionally, the redox ratio was significantly elevated (P<0.05), and ROS levels were also increased in the combination group compared with the EGFR-TKI group. ConclusionIn NSCLC cells, Scutellariae Radix enhances the redox ratio and increases ROS levels, thereby inhibiting the expression of CSC markers and strengthening the anti-tumor effects of EGFR-TKIs. This provides a novel molecular mechanism by which Scutellariae Radix may enhance the sensitivity of targeted therapies.
4.Mediating effects of loneliness and depressive symptoms on family function and life satisfaction among rural elderly patients with chronic diseases
LI Zhonglian ; MO Xiangang ; QIN Suxia ; ZHOU Quanxiang ; ZHU Yafen ; MO Caiyun ; YI Aijing ; CHEN Juhai
Journal of Preventive Medicine 2025;37(6):551-556,561
Objective:
To analyze the mediating effects of loneliness and depressive symptoms on family functioning and life satisfaction among rural elderly patients with chronic diseases, so as to provide the basis for improving the life satisfaction of this population.
Methods:
Rural elderly patients with chronic diseases aged ≥60 years in Qiannan Buyi and Miao Autonomous Prefecture, Guizhou Province were selected using a multi-stage stratified random cluster sampling method from June to September 2022. Basic information such as gender, age, and chronic diseases were collected. Family function, life satisfaction, loneliness and depressive symptoms were evaluated using Family Care Index Scale, the Satisfaction with Life Scale, the b-item Revised VCLA Loneliness Sale and the 15-item Geriatric Depression Scale, respectively. The structural equation model was constructed using Amos software to analyze the mediating effects of loneliness and depressive symptoms on the relationship between family function and life satisfaction. The Bootstrap method was employed to test the mediating effects.
Results:
A total of 1 145 rural elderly patients with chronic diseases were recruited, including 517 males (45.15%) and 628 females (54.85%). Among the participants, 657 individuals (57.38%) were aged 60-<71 years, and 540 individuals (47.16%) had three or more chronic diseases. The scores for family function, life satisfaction, loneliness, and depressive symptoms were (3.90±1.18), (18.88±5.25), (12.88±2.99), and (6.65±2.26), respectively. Mediating effect analysis showed that family function had a direct positive effect on life satisfaction (β=0.179, 95%CI: 0.126-0.231). It also indirectly positively influenced the life satisfaction of rural elderly patients with chronic diseases through the independent mediating effect of depressive symptoms (β=0.035, 95%CI: 0.021-0.054) and the chained mediating effect of loneliness and depressive symptoms (β=0.021, 95%CI: 0.013-0.030). The mediating effect of depressive symptoms accounted for 14.89% of the total effect, while the chained mediating effect of loneliness and depressive symptoms accounted for 8.94% of the total effect.
Conclusion
Good family function can directly enhance the life satisfaction of rural elderly patients with chronic diseases and can also indirectly improve their life satisfaction by reducing loneliness and depressive symptoms.
5.P4HA1 mediates YAP hydroxylation and accelerates collagen synthesis in temozolomide-resistant glioblastoma.
Xueru LI ; Gangfeng YU ; Xiao ZHONG ; Jiacheng ZHONG ; Xiangyu CHEN ; Qinglong CHEN ; Jinjiang XUE ; Xi YANG ; Xinchun ZHANG ; Yao LING ; Yun XIU ; Yaqi DENG ; Hongda LI ; Wei MO ; Yong ZHU ; Ting ZHANG ; Liangjun QIAO ; Song CHEN ; Fanghui LU
Chinese Medical Journal 2025;138(16):1991-2005
BACKGROUND:
Temozolomide (TMZ) resistance is a significant challenge in treating glioblastoma (GBM). Collagen remodeling has been shown to be a critical factor for therapy resistance in other cancers. This study aimed to investigate the mechanism of TMZ chemoresistance by GBM cells reprogramming collagens.
METHODS:
Key extracellular matrix components, including collagens, were examined in paired primary and recurrent GBM samples as well as in TMZ-treated spontaneous and grafted GBM murine models. Human GBM cell lines (U251, TS667) and mouse primary GBM cells were used for in vitro studies. RNA-sequencing analysis, chromatin immunoprecipitation, immunoprecipitation-mass spectrometry, and co-immunoprecipitation assays were conducted to explore the mechanisms involved in collagen accumulation. A series of in vitro and in vivo experiments were designed to assess the role of the collagen regulators prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and yes-associated protein (YAP) in sensitizing GBM cells to TMZ.
RESULTS:
This study revealed that TMZ exposure significantly elevated collagen type I (COL I) expression in both GBM patients and murine models. Collagen accumulation sustained GBM cell survival under TMZ-induced stress, contributing to enhanced TMZ resistance. Mechanistically, P4HA1 directly binded to and hydroxylated YAP, preventing ubiquitination-mediated YAP degradation. Stabilized YAP robustly drove collagen type I alpha 1 ( COL1A1) transcription, leading to increased collagen deposition. Disruption of the P4HA1-YAP axis effectively reduced COL I deposition, sensitized GBM cells to TMZ, and significantly improved mouse survival.
CONCLUSION
P4HA1 maintained YAP-mediated COL1A1 transcription, leading to collagen accumulation and promoting chemoresistance in GBM.
Temozolomide
;
Humans
;
Glioblastoma/drug therapy*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
YAP-Signaling Proteins
;
Hydroxylation
;
Dacarbazine/pharmacology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Collagen/biosynthesis*
;
Collagen Type I/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Antineoplastic Agents, Alkylating/therapeutic use*
6.JMJD1C forms condensate to facilitate a RUNX1-dependent gene expression program shared by multiple types of AML cells.
Qian CHEN ; Saisai WANG ; Juqing ZHANG ; Min XIE ; Bin LU ; Jie HE ; Zhuoran ZHEN ; Jing LI ; Jiajun ZHU ; Rong LI ; Pilong LI ; Haifeng WANG ; Christopher R VAKOC ; Robert G ROEDER ; Mo CHEN
Protein & Cell 2025;16(5):338-364
JMJD1C (Jumonji Domain Containing 1C), a member of the lysine demethylase 3 (KDM3) family, is universally required for the survival of several types of acute myeloid leukemia (AML) cells with different genetic mutations, representing a therapeutic opportunity with broad application. Yet how JMJD1C regulates the leukemic programs of various AML cells is largely unexplored. Here we show that JMJD1C interacts with the master hematopoietic transcription factor RUNX1, which thereby recruits JMJD1C to the genome to facilitate a RUNX1-driven transcriptional program that supports leukemic cell survival. The underlying mechanism hinges on the long N-terminal disordered region of JMJD1C, which harbors two inseparable abilities: condensate formation and direct interaction with RUNX1. This dual capability of JMJD1C may influence enhancer-promoter contacts crucial for the expression of key leukemic genes regulated by RUNX1. Our findings demonstrate a previously unappreciated role for the non-catalytic function of JMJD1C in transcriptional regulation, underlying a mechanism shared by different types of leukemias.
Core Binding Factor Alpha 2 Subunit/genetics*
;
Humans
;
Leukemia, Myeloid, Acute/pathology*
;
Jumonji Domain-Containing Histone Demethylases/chemistry*
;
Gene Expression Regulation, Leukemic
;
Oxidoreductases, N-Demethylating/genetics*
;
Cell Line, Tumor
7.Mechanistic study on the effects of 2'-fucosyllactose in alleviating immune checkpoint inhibitor-induced colitis in mice
MO Jinling1 ; ZHANG Hongtao2 ; HU Nan3 ; ZHOU Dong1 ; ZHU Aoshuang1 ; JIANG Jingting3 ; ZHANG Wenting1,3,4
Chinese Journal of Cancer Biotherapy 2025;32(12):1228-1235
[摘 要] 目的:探究2'-岩藻糖基乳糖(2'-FL)对小鼠免疫检查点抑制剂(ICI)相关结肠炎(ICIC)的作用及其机制。方法:用随机数字表法将BALB/c小鼠随机分为对照组、葡聚糖硫酸钠(DSS)组、ICIC组、ICIC + 2'-FL组。DSS组连续7 d自由摄取含3.5% DSS的饮用水诱导结肠炎;ICIC组在摄取含3.5% DSS的饮用水的同时在实验第0天和第4天通过腹腔注射细胞毒性T淋巴细胞相关抗原4抗体(CTLA⁃4抗体,剂量为150 µg/只)构建ICIC模型;ICIC + 2'-FL组在ICIC造模同时从实验开始每日灌胃给予2'-FL[150 mg/(kg·d)]。统计分析小鼠体质量和疾病活动性评分(DAI)变化。第7天处死小鼠,测量结肠长度,用H-E染色法观察各组结肠组织学形态变化,用免疫组织化学(IHC)法检测CD3+ T细胞和CD19+B细胞在结肠组织中的浸润情况,用转录组学方法对结肠组织进行RNA测序,统计分析各组结肠组织中的差异表达基因(DEG)并进行基因本体论(GO)功能注释和京都基因与基因组百科全书(KEGG)富集分析。结果:与对照组和DSS组比较,ICIC组小鼠体质量明显下降、DAI评分上升、结肠长度更短(均P < 0.05),结肠黏膜完整性受损,呈现典型的溃疡性病变;与ICIC组比较,ICIC + 2'-FL组小鼠体质量下降显著缓解、DAI评分降低,结肠长度恢复(均P < 0.05)。转录组学检测结果显示,与ICIC组相比,2'-FL处理组有51个DEG,GO功能注释和KEGG富集分析提示,2'-FL缓解ICIC样症状与B细胞受体、B细胞增殖调控、炎症反应和修复相关通路的上调有关。结论:人乳寡糖2'-FL可显著缓解ICIC的病理进程,其可能通过B细胞受体相关信号通路及与炎症反应和修复相关通路减轻ICIC小鼠结肠组织的损伤。
8.Multidisciplinary expert consensus on weight management for overweight and obese children and adolescents based on healthy lifestyle
HONG Ping, MA Yuguo, TAO Fangbiao, XU Yajun, ZHANG Qian, HU Liang, WEI Gaoxia, YANG Yuexin, QIAN Junwei, HOU Xiao, ZHANG Yimin, SUN Tingting, XI Bo, DONG Xiaosheng, MA Jun, SONG Yi, WANG Haijun, HE Gang, CHEN Runsen, LIU Jingmin, HUANG Zhijian, HU Guopeng, QIAN Jinghua, BAO Ke, LI Xuemei, ZHU Dan, FENG Junpeng, SHA Mo, Chinese Association for Student Nutrition & ; Health Promotion, Key Laboratory of Sports and Physical Fitness of the Ministry of Education,〖JZ〗 Engineering Research Center of Ministry of Education for Key Core Technical Integration System and Equipment,〖JZ〗 Key Laboratory of Exercise Rehabilitation Science of the Ministry of Education
Chinese Journal of School Health 2025;46(12):1673-1680
Abstract
In recent years, the prevalence of overweight and obesity among children and adolescents has risen rapidly, posing a serious threat to their physical and mental health. To provide scientific, systematic, and standardized weight management guidance for overweight and obese children and adolescents, the study focuses on the core concept of healthy lifestyle intervention, integrates multidisciplinary expert opinions and research findings,and proposes a comprehensive multidisciplinary intervention framework covering scientific exercise intervention, precise nutrition and diet, optimized sleep management, and standardized psychological support. It calls for the establishment of a multi agent collaborative management mechanism led by the government, implemented by families, fostered by schools, initiated by individuals, optimized by communities, reinforced by healthcare, and coordinated by multiple stakeholders. Emphasizing a child and adolescent centered approach, the consensus advocates for comprehensive, multi level, and personalized guidance strategies to promote the internalization and maintenance of a healthy lifestyle. It serves as a reference and provides recommendations for the effective prevention and control of overweight and obesity, and enhancing the health level of children and adolescents.
9.Effects of α-hederin alone or in combination with cisplatin on the proliferation and apoptosis of non-small cell lung cancer cells based on EGFR/AKT and JAK2/STAT3 pathways
ZHU Zhiminga ; WANG Sumeib ; TANG Qingb ; WANG Xib ; WAN Xinliangb ; MO Handanb ; JIA Luyub ; YU Xiaoyanb ; ZHOU Qichunb
Chinese Journal of Cancer Biotherapy 2024;31(4):333-341
[摘 要] 目的:探讨α-常春藤皂苷(α-Hed)诱导非小细胞肺癌(NSCLC)细胞凋亡的作用靶点及其潜在机制,明确α-Hed与顺铂(DDP)联用后对相应的靶点蛋白表达的影响。方法:采用CCK-8法检测不同浓度α-Hed处理后NSCLC细胞A549、H1299和PC-9的存活率,采用Annexin Ⅴ-FITC/PI染色流式细胞术检测细胞凋亡率,采用WB法检测细胞中C-caspase-3和Bcl-2蛋白的表达。通过网络药理学相关方法筛选α-Hed的潜在靶点,利用分子对接法分析其结合效果,WB法检测靶点蛋白的表达。通过CCK-8法、细胞集落形成实验和WB法检测α-Hed与DDP联用对NSCLC细胞的抑制作用。结果:给药24和48 h后,10、15和20 μmol/L α-Hed可以显著抑制NSCLC细胞增殖活力(均P<0.01);与对照组相比,20 μmol/L α-Hed处理后细胞凋亡率显著升高(P<0.01);α-Hed可上调NSCLC细胞中C-caspase-3的表达(P<0.05),下调Bcl-2的表达(P<0.05)。网络药理学和分子对接筛选出结合亲和力小于-5 kcal/mol的靶点AKT1、STAT3、EGFR和JAK2。WB法检测结果显示,α-Hed处理后A549、H1299细胞中EGFR、p-AKT/AKT、p-STAT3/STAT3和JAK2蛋白的表达均明显下调(均P<0.05)。α-Hed与DDP联用后,更显著地抑制NSCLC细胞的增殖(P<0.01),进一步下调EGFR、p-AKT/AKT、p-STAT3/STAT3和JAK2蛋白的表达(P<0.05或P<0.01)。结论:α-Hed通过下调EGFR和JAK2的表达抑制STAT3和AKT的磷酸化,诱导NSCLC细胞凋亡,与DDP联用后其抑制效果增强,EGFR/AKT和JAK2/STAT3通路也进一步被抑制。
10.Mechanism of Wenfei Huaxian Decoction-containing Serum in Delaying Inflammatory Senescence of Lung Mesenchymal Stem Cells Based on NAMPT/SIRT1
Junxia HU ; Yueqi XU ; Jun WANG ; Guoshaung ZHU ; Shiwen KE ; Mingliang QIU ; Liangji LIU ; Lisha MO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(12):45-53
ObjectiveThe lung mesenchymal stem cells (LMSCs) induced by D-galactose (D-gal) were intervened by Wenfei Huaxian decoction-containing serum to explore the mechanism of Wenfei Huaxian decoction in delaying the senescence of LMSCs through the nicotinamide phosphoribosyltransferase/silent information regulator 1 (NAMPT/SIRT1) signaling pathway. MethodWenfei Huaxian decoction-containing serum was prepared. LMSCs were isolated by gradient density centrifugation, and they were cultured and identified in vitro. The senescence model in vitro was established by stimulating cells via D-gal for 24 h. LMSCs cells were modeled after being treated with different volume fractions (5%, 10%, 20%, 40%, and 80%) of Wenfei Huaxian decoction-containing serum for 24 h, and the cell proliferation level was detected by methyl thiazolyl tetrazolium (MTT) method. The cells were randomly divided into blank serum group, model group, and high, medium, and low dose groups of Wenfei Huaxian decoction-containing serum. Senescence-associated β-galactosidase (SA-β-gal) staining was used to detect the senescence of LMSCs in each group. The content of NAD + was detected by colorimetry. The levels of senescence-associated factors (p16 and p53), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in cell culture supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Western blot was used to detect the relative expression of senescence-associated proteins and NAMPT/SIRT1 signaling pathway-related proteins. ResultCompared with the blank serum group, the proliferation of LMSCs was significantly inhibited after D-gal stimulation for 24 h (P<0.01). Compared with the model group, the proliferation of LMSCs could be promoted after intervention with the corresponding Wenfei Huaxian decoction-containing serum (P<0.05, P<0.01). Compared with the blank serum group, the SA-β-gal staining of LMSCs in the model group after D-gal stimulation was enhanced, and the content of NAD+ was increased (P<0.01). The expression levels of senescence factors p16 and p53, as well as SASP pro-inflammatory factors IL-6 and TNF-α in the cell culture supernatant, were significantly increased (P<0.01). The expression of senescence-associated proteins p16, p21, and p53 increased (P<0.01), and the protein expression of NAMPT, SIRT1, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and forkhead box family transcription factor O1 (FoxO1) decreased (P<0.01). Compared with the model group, the SA-β-gal staining of LMSCs in each group of Wenfei Huaxian decoction-containing serum was significantly reduced, and the content of NAD+ was decreased (P<0.01). The senescence factors (p16 and p53) and inflammatory factors (IL-6 and TNF-α) in the cell culture supernatant were significantly decreased (P<0.01). The expression of senescence-associated proteins (P16, P21, and P53) decreased (P<0.05, P<0.01). The protein expressions of NAMPT, SIRT1, PGC-1α, and FoxO1 were significantly up-regulated (P<0.05, P<0.01). ConclusionWenfei Huaxian decoction can alleviate senescence and inflammatory response damage of D-gal-induced LMSCs, and its mechanism may be related to the regulation of the NAMPT/SIRT1 signaling pathway.


Result Analysis
Print
Save
E-mail