1.Cimifugin ameliorates Crohn's disease-like colitis in mice by modulating Th-cell immune balance via inhibiting the MAPK pathway.
Lixia YIN ; Minzhu NIU ; Keni ZHANG ; Zhijun GENG ; Jianguo HU ; Jiangyan LI ; Jing LI
Journal of Southern Medical University 2025;45(3):595-602
OBJECTIVES:
To investigate the therapeutic effects of cimifugin on Crohn's disease (CD)-like colitis in mice and its possible mechanism.
METHODS:
Thirty adult male C57BL/6 mice were randomized equally into control group, 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced CD-like colitis model group, and cimifugin treatment (daily gavage at 12.5 mg/kg) group. The therapeutic effect of cimifugin was evaluated by observing changes in body weight, disease activity index (DAI) scores, colon length, histopathological inflammation scores, and inflammatory cytokine levels in the colonic mucosa. Intestinal barrier integrity in the mice was assessed using immunofluorescence assay and Western blotting for claudin-1 and ZO-1; T-helper (Th) cell subset ratios in the mesenteric lymph nodes were analyzed with flow cytometry. Network pharmacology, KEGG enrichment analysis and molecular docking were used to predict the targets of cimifugin and analyze the key pathways and cimifugin-MAPK protein interactions, which were validated by Western blotting in the mouse models.
RESULTS:
In mice with TNBS-induced colitis, cimifugin treatment significantly attenuated body weight loss and colon shortening, lowered DAI and histopathological scores, decreased IFN-γ and IL-17 levels, and increased IL-4 and IL-10 levels in the colonic mucosa. Cimifugin treatment also significantly improved TNBS-induced claudin-1 dislocation and reduction of goblet cells, upregulated claudin-1 and ZO-1 expressions, reduced Th1 and Th17 cell percentages, and increased Th2 and Treg cell percentages in the colonic mucosa of the mice. KEGG analysis suggested a possible connection between the effect of cimifugin and MAPK signaling, and molecular docking showed strong binding affinity between cimifugin and MAPK core proteins. Western blotting demonstrated significantly decreased phosphorylation levels of JNK, ERK, and p38 in the colonic mucosa of cimifugin-treated mouse models.
CONCLUSIONS
Cimifugin alleviates TNBS-induced CD-like colitis by repairing intestinal barrier damage and restoring Th1/Th2 and Th17/Treg balance via suppressing MAPK pathway activation.
Animals
;
Mice, Inbred C57BL
;
Male
;
Mice
;
Crohn Disease/immunology*
;
Colitis/immunology*
;
MAP Kinase Signaling System/drug effects*
;
Trinitrobenzenesulfonic Acid
;
T-Lymphocytes, Helper-Inducer/drug effects*
;
Intestinal Mucosa
;
Disease Models, Animal
2.Ecliptasaponin A ameliorates DSS-induced colitis in mice by suppressing M1 macrophage polarization via inhibiting the JAK2/STAT3 pathway.
Minzhu NIU ; Lixia YIN ; Tong QIAO ; Lin YIN ; Keni ZHANG ; Jianguo HU ; Chuanwang SONG ; Zhijun GENG ; Jing LI
Journal of Southern Medical University 2025;45(6):1297-1306
OBJECTIVES:
To investigate the effect of ecliptasaponin A (ESA) for alleviating dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD) in mice and the underlying mechanism.
METHODS:
Twenty-four male C57BL/6 mice (8-10 weeks old) were equally randomized into control group, DSS-induced IBD model group, and DSS+ESA (50 mg/kg) treatment group. Disease activity index (DAI), colon length and spleen index of the mice were measured, and intestinal pathology was examined with HE staining. The expressions of inflammatory mediators (TNF-α, IL-6, and iNOS) in the colon mucosa were detected using ELISA and RT-qPCR, and intestinal barrier integrity was assessed using AB-PAS staining and by detecting ZO-1 and claudin-1 expressions using immunofluorescence staining and Western blotting. In cultured RAW264.7 macrophages, the effects of treatment with 50 μmol/L ESA, alone or in combination with 20 μmol/L RO8191 (a JAK2/STAT3 pathway activator), on M1 polarization of the cells induced by LPS and IFN-γ stimulation and expressions of JAK2/STAT3 pathway proteins were analyzed using flow cytometry and Western blotting.
RESULTS:
In the mouse models of DSS-induced IBD, ESA treatment significantly alleviated body weight loss and colon shortening, reduced DAI, spleen index and histological scores, and ameliorated inflammatory cell infiltration in the colon tissue. ESA treatment also suppressed TNF‑α, IL-6 and iNOS expressions, protected the goblet cells and the integrity of the mucus and mechanical barriers, and upregulated the expressions of ZO-1 and claudin-1. ESA treatment obviously decreased CD86+ M1 polarization in the mesenteric lymph nodes of IBD mice and in LPS and IFN-γ-induced RAW264.7 cells, and significantly reduced p-JAK2 and p-STAT3 expressions in both the mouse models and RAW264.7 cells. Treatment with RO8191 caused reactivation of JAK2/STAT3 and strongly attenuated the inhibitory effect of ESA on CD86+ polarization in RAW264.7 cells.
CONCLUSIONS
ESA alleviates DSS-induced colitis in mice by suppressing JAK2/STAT3-mediated M1 macrophage polarization and mitigating inflammation-driven intestinal barrier damage.
Animals
;
Mice
;
Janus Kinase 2/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Dextran Sulfate
;
Macrophages/cytology*
;
Colitis/metabolism*
;
Saponins/pharmacology*
;
Signal Transduction/drug effects*
;
RAW 264.7 Cells
;
Triterpenes/pharmacology*
;
Interleukin-6/metabolism*
3.High expression of ATP5A1 in gastric carcinoma is correlated with a poor prognosis and enhanced glucose metabolism in tumor cells
Jingjing YANG ; Lixia YIN ; Ting DUAN ; Minzhu NIU ; Zhendong HE ; Xinrui CHEN ; Xiaofeng ZHANG ; Jing LI ; Zhijun GENG ; Lugen ZUO
Journal of Southern Medical University 2024;44(5):974-980
Objective To analyze the expression level of ATP5A1 in gastric carcinoma and its influence on the prognosis of the patients and glucose metabolism in the tumor cells.Methods We retrospectively analyzed the data of 115 patients undergoing radical resection of gastric carcinoma in our hospital from February,2013 to November,2016.ATP5A1 expression in the surgical specimens were detected using immunohistochemistry,and the long-term prognosis of the patients with high(n=58)and low ATP5A1 expression(n=57)were analyzed.In gastric carcinoma MGC803 cells,the effects of lentivirus-mediated ATP5A1 knockdown or overexpression on glucose metabolism were investigated.We also observed the growth and glucose metabolism of xenografts derived from MGC803 cells with ATP5A1 knockdown or overexpression in nude mice.Results ATP5A1 was significantly overexpressed in gastric carcinoma tissues in close correlation with blood CEA and CA19-9 levels,pathological grade,T stage and N stage(P<0.05).ATP5A1 overexpression was an independent risk factor for a significantly lowered 5-year survival rate of patients with gastric carcinoma(P<0.05).ROC curve analysis demonstrated the predictive value of high ATP5A1 expression for the patients'prognosis(P<0.001).In MGC803 cells,ATP5A1 overexpression significantly up-regulated cellular glucose uptake and lactate production and increased the protein levels of HK2,PFK1,and LDHA(P<0.05),while ATP5A1 knockdown produced the opposite changes(P<0.05).In the tumor-bearing mice,overexpression of ATP5A1 increased glucose metabolism of the tumor cells and promoted tumor growth(P<0.05).Overexpression of ATP5A1 promoted the expressions of p-JNK and p-JUN in MGC803 cells(P<0.05),and the JNK inhibitor SP600125 significantly inhibited the enhancement of cellular glucose metabolism induced by ATP5A1 overexpression(P<0.05).Conclusion High ATP5A1 expression in gastric cancer is associated a poor long-term prognosis of the patients,and its effect is mediated at least partly by promoting glucose metabolism of the cells through the JNK/JUN pathway.
4.Kuwanon G inhibits growth,migration and invasion of gastric cancer cells by regulating the PI3K/AKT/mTOR pathway
Zhijun GENG ; Jingjing YANG ; Minzhu NIU ; Xinyue LIU ; Jinran SHI ; Yike LIU ; Xinyu YAO ; Yulu ZHANG ; Xiaofeng ZHANG ; Jianguo HU
Journal of Southern Medical University 2024;44(8):1476-1484
Objective To investigate the effects of kuwanon G(KG)on proliferation,apoptosis,migration and invasion of gastric cancer cells and the molecular mechanisms.Methods The effects of KG on proliferation and growth of gastric cancer cells were assessed with CCK-8 assay and cell clone formation assay,by observing tumor formation on the back of nude mice and using immunohistochemical analysis of Ki-67.The effect of KG on cell apoptosis was analyzed using Annexin V-FITC/PI apoptosis detection kit,Western blotting and TUNEL staining.The effects of KG on cell migration and invasion were detected using Transwell migration and invasion assay and Western blotting for matrix metalloproteinase(MMP).The role of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)pathway in KG-mediated regulation of gastric cancer cell proliferation,migration,and invasion was verified by Western blotting and rescue assay.Results KG significantly inhibited proliferation and reduced clone formation ability of gastric cancer cells in a concentration-dependent manner(P<0.05).KG treatment also increased apoptosis,enhanced the expressions of cleaved caspase-3 and Bax,down-regulated Bcl-2,lowered migration and invasion capacities and inhibited the expression of MMP2 and MMP9 in gastric cancer cells(P<0.05).Mechanistic validation showed that KG inhibited the activation of the PI3K/AKT/mTOR pathway,and IGF-1,an activator of the PI3K/AKT/mTOR pathway,reversed the effects of KG on proliferation,migration and invasion of gastric cancer cells(P<0.05).Conclusion KG inhibits proliferation,migration and invasion and promotes apoptosis of gastric cancer cells at least in part by inhibiting the activation of the PI3K/AKT/mTOR pathway.
5.High expression of ATP5A1 in gastric carcinoma is correlated with a poor prognosis and enhanced glucose metabolism in tumor cells
Jingjing YANG ; Lixia YIN ; Ting DUAN ; Minzhu NIU ; Zhendong HE ; Xinrui CHEN ; Xiaofeng ZHANG ; Jing LI ; Zhijun GENG ; Lugen ZUO
Journal of Southern Medical University 2024;44(5):974-980
Objective To analyze the expression level of ATP5A1 in gastric carcinoma and its influence on the prognosis of the patients and glucose metabolism in the tumor cells.Methods We retrospectively analyzed the data of 115 patients undergoing radical resection of gastric carcinoma in our hospital from February,2013 to November,2016.ATP5A1 expression in the surgical specimens were detected using immunohistochemistry,and the long-term prognosis of the patients with high(n=58)and low ATP5A1 expression(n=57)were analyzed.In gastric carcinoma MGC803 cells,the effects of lentivirus-mediated ATP5A1 knockdown or overexpression on glucose metabolism were investigated.We also observed the growth and glucose metabolism of xenografts derived from MGC803 cells with ATP5A1 knockdown or overexpression in nude mice.Results ATP5A1 was significantly overexpressed in gastric carcinoma tissues in close correlation with blood CEA and CA19-9 levels,pathological grade,T stage and N stage(P<0.05).ATP5A1 overexpression was an independent risk factor for a significantly lowered 5-year survival rate of patients with gastric carcinoma(P<0.05).ROC curve analysis demonstrated the predictive value of high ATP5A1 expression for the patients'prognosis(P<0.001).In MGC803 cells,ATP5A1 overexpression significantly up-regulated cellular glucose uptake and lactate production and increased the protein levels of HK2,PFK1,and LDHA(P<0.05),while ATP5A1 knockdown produced the opposite changes(P<0.05).In the tumor-bearing mice,overexpression of ATP5A1 increased glucose metabolism of the tumor cells and promoted tumor growth(P<0.05).Overexpression of ATP5A1 promoted the expressions of p-JNK and p-JUN in MGC803 cells(P<0.05),and the JNK inhibitor SP600125 significantly inhibited the enhancement of cellular glucose metabolism induced by ATP5A1 overexpression(P<0.05).Conclusion High ATP5A1 expression in gastric cancer is associated a poor long-term prognosis of the patients,and its effect is mediated at least partly by promoting glucose metabolism of the cells through the JNK/JUN pathway.
6.Kuwanon G inhibits growth,migration and invasion of gastric cancer cells by regulating the PI3K/AKT/mTOR pathway
Zhijun GENG ; Jingjing YANG ; Minzhu NIU ; Xinyue LIU ; Jinran SHI ; Yike LIU ; Xinyu YAO ; Yulu ZHANG ; Xiaofeng ZHANG ; Jianguo HU
Journal of Southern Medical University 2024;44(8):1476-1484
Objective To investigate the effects of kuwanon G(KG)on proliferation,apoptosis,migration and invasion of gastric cancer cells and the molecular mechanisms.Methods The effects of KG on proliferation and growth of gastric cancer cells were assessed with CCK-8 assay and cell clone formation assay,by observing tumor formation on the back of nude mice and using immunohistochemical analysis of Ki-67.The effect of KG on cell apoptosis was analyzed using Annexin V-FITC/PI apoptosis detection kit,Western blotting and TUNEL staining.The effects of KG on cell migration and invasion were detected using Transwell migration and invasion assay and Western blotting for matrix metalloproteinase(MMP).The role of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)pathway in KG-mediated regulation of gastric cancer cell proliferation,migration,and invasion was verified by Western blotting and rescue assay.Results KG significantly inhibited proliferation and reduced clone formation ability of gastric cancer cells in a concentration-dependent manner(P<0.05).KG treatment also increased apoptosis,enhanced the expressions of cleaved caspase-3 and Bax,down-regulated Bcl-2,lowered migration and invasion capacities and inhibited the expression of MMP2 and MMP9 in gastric cancer cells(P<0.05).Mechanistic validation showed that KG inhibited the activation of the PI3K/AKT/mTOR pathway,and IGF-1,an activator of the PI3K/AKT/mTOR pathway,reversed the effects of KG on proliferation,migration and invasion of gastric cancer cells(P<0.05).Conclusion KG inhibits proliferation,migration and invasion and promotes apoptosis of gastric cancer cells at least in part by inhibiting the activation of the PI3K/AKT/mTOR pathway.
7.The single nucleotide polymorphism rs1814521 in long non-coding RNA ADGRG3 associates with the susceptibility to silicosis: a multi-stage study.
Wei WANG ; Xiaofeng CHEN ; Chunping LI ; Rui ZHAO ; Jinlong ZHANG ; Hong QIN ; Miaomiao WANG ; Yao SU ; Minzhu TANG ; Lei HAN ; Na SUN
Environmental Health and Preventive Medicine 2022;27(0):5-5
BACKGROUND:
This study aimed to evaluate the correlation between long non-coding RNA (lncRNA)-related single nucleotide polymorphisms (SNPs) and susceptibility to silicosis.
METHODS:
First, RNA-sequencing (RNA-seq) data were comprehensively analyzed in the peripheral blood lymphocytes of eight participants (four silicosis cases and four healthy controls) exposed to silica dust to identify differentially expressed lncRNAs (DE-lncRNAs). The functional SNPs in the identified DE-lncRNAs were then identified using several databases. Finally, the association between functional SNPs and susceptibility to silicosis was evaluated by a two-stage case-control study. The SNPs of 155 silicosis cases and 141 healthy silica-exposed controls were screened by genome-wide association study (GWAS), and the candidate SNPs of 194 silicosis cases and 235 healthy silica-exposed controls were validated by genotyping using the improved Mutiligase Detection Reaction (iMLDR) system.
RESULTS:
A total of 76 DE-lncRNAs were identified by RNA-seq data analysis (cut-offs: fold change > 2 or fold change < 0.5, P < 0.05), while 127 functional SNPs among those 76 DE-lncRNAs were identified through multiple public databases. Furthermore, five SNPs were found to be significantly correlated with the risk of silicosis by GWAS screening (P < 0.05), while the results of GWAS and iMLDR validation indicated that the variant A allele of rs1814521 was associated with a reduced risk of silicosis (OR = 0.76, 95% CI = 0.62-0.94, P = 0.011).
CONCLUSION
The presence of the SNP rs1814521 in the lncRNA ADGRG3 is associated with susceptibility to silicosis. Moreover, ADGRG3 was found to be lowly expressed in silicosis cases. The underlying biological mechanisms by which lncRNA ADGRG3 and rs1814521 regulate the development of silicosis need further study.
Case-Control Studies
;
Genetic Predisposition to Disease
;
Genome-Wide Association Study
;
Humans
;
Polymorphism, Single Nucleotide
;
RNA, Long Noncoding/genetics*
;
Silicosis/genetics*
8.Mechanism of Chinese Medicine in Xingnao and Kaiqiao Against Cerebral Ischemia/Reperfusion Injury: A Review
Zhi-gang LU ; Chang-ming YANG ; Xiang-hui KONG ; Zhi-yuan GAO ; Tong-mei ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2021;27(24):235-242
Cerebral ischemia/reperfusion injury (CIRI) is a common feature and the main pathophysiological mechanism of ischemic stroke(IS), which is caused by a blood reperfusion injury in ischemic brain tissues. It can aggravate brain tissue injury and cause irreversible brain damage, seriously affecting the quality of life or even the life of patients. Hence, we must find out the exact mechanism as well as the effective therapeutic drugs and targets for CIRI. The Chinese medicine effective in Xingnao (restoring consciousness) and Kaiqiao (opening orifices) has been widely used in the treatment of CIRI and serves as a classic therapy for IS. In recent years, scholars have conducted extensive and in-depth studies on the mechanism and therapeutic targets of Chinese medicine in Xingnao and Kaiqiao. They found that those drugs could interfere with a series of changes after IS and achieve the remarkable curative effect. This study summarized the effect and mechanism of Chinese medicine in Xingnao and Kaiqiao in the treatment of CIRI, including reducing the inflammatory response and oxidative stress, alleviating brain edema and the toxicity of excitatory amino acids, reducing cell apoptosis, promoting angiogenesis and neurovascular remodeling, and improving blood-brain barrier injury. It is expected to provide references to clarify the mechanism and important targets of those drugs in resisting CIRI and ideas for the in-depth investigation and application of brain protection of Chinese medicine in Xingnao and Kaiqiao.
9.Current status and progress of foreign research on nursing human resource allocation system RAFAELA
Yu WANG ; Zhixia JIANG ; Fang ZHANG ; Minzhu CHEN ; Xiying ZHANG
Chinese Journal of Practical Nursing 2021;37(21):1671-1675
Due to the reform of medical system, sudden infectious diseases and the increasing demand of patients, the problems of insufficient allocation of human resources and low quality of nursing human resources in China not only affect the treatment and prognosis of patients, but also hinder the development of nursing itself. In order to improve the current situation of nursing staffing in China, this paper summarizes the RAFAELA system of nursing resource allocation in Finland and the need for improvement. In order to promote the improvement and development of the optimal allocation of nursing human resources in China.
10.Study on the Migration Resistance of Additives in Disposable Photophobic Infusion Set.
Minzhu WANG ; Lixin SHEN ; Yin HAN ; Li ZHANG ; Jian ZHENG
Chinese Journal of Medical Instrumentation 2018;42(4):244-245
The disposable photophobic infusion was used to simulate clinical infusion under different conditions. The simulated liquid was collected every 30 min (total 4 h),and detected the additives (Fe, MDA and antioxidant 1076) in simulated liquid by spectroscopic method and chromatography method. The method is simple and stable, and can be used for the technical monitoring of the disposable photophobic infusion set in the future.
Disposable Equipment
;
Photochemical Processes

Result Analysis
Print
Save
E-mail