1.Indoleamine-2,3-dioxygenase: An important controller in maintaining mesenchymal stem cell-mediated immunomodulatory homeostasis.
Yufei HUI ; Xue JIAO ; Li YANG ; Dejin LU ; Yanbo HAN ; Wen YANG ; Yanli CAO ; Yuxi MIAO ; Shiqiang GONG ; Minjie WEI
Acta Pharmaceutica Sinica B 2025;15(7):3404-3418
Mesenchymal stem cells (MSCs) have been widely used in the treatment of various autoimmune and inflammation-related diseases due to their potent immunomodulatory properties. Several studies have demonstrated that MSC-mediated immunomodulation is complex and bidirectional, with the in vivo microenvironment influencing the direction of this modulation. Indoleamine-2,3-dioxygenase (IDO), an immunosuppressive factor, has been identified as a key "switch" in the immunomodulatory role of MSCs. In this review, we explore how IDO functions as a critical regulator of MSC immunoregulatory plasticity. We delve into the mechanisms by which changes in IDO expression affect the function of various immune cells, summarize relevant research and clinical advances regarding the role of IDO expression in MSC-based therapies for various diseases, and discuss potential therapeutic strategies that target IDO to enhance the stability of MSC therapeutic effects. This provides a theoretical foundation for optimizing MSCs as safer and more effective clinical therapeutic agents.
2.Screening and characterization of camelid-derived nanobodies against hemoglobin.
Ning ZHONG ; Wenhui LEI ; Zuying LIU ; Xiaoxiao XIE ; Lingjing ZHANG ; Tengchuan JIN ; Minjie CAO ; Yulei CHEN
Chinese Journal of Biotechnology 2025;41(4):1515-1534
Hemoglobin, the principal protein in red blood cells, is crucial for oxygen transport in the bloodstream. The quantification of hemoglobin concentration is indispensable in medical diagnostics and health management, which encompass the diagnosis of anemia and the screening of various blood disorders. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy. Consequently, it is necessary to develop hemoglobin-specific antibodies characterized by high specificity and affinity to enhance detection accuracy. In this study, we immunized a Bactrian camel (Camelus bactrianus) with human hemoglobin and subsequently constructed a nanobody library. Utilizing a solid-phase screening method, we selected nanobodies and evaluated the binding activity of the screened nanobodies to hemoglobin. Initially, human hemoglobin was used to immunize a Bactrian camel. Following four immunization sessions, blood was withdrawn from the jugular vein, and a nanobody library with a capacity of 2.85×108 colony forming units (CFU) was generated. Subsequently, ten hemoglobin-specific nanobody sequences were identified through three rounds of adsorption-elution-enrichment assays, and these nanobodies were subjected to eukaryotic expression. Finally, enzyme-linked immunosorbent assay and biolayer interferometry were employed to evaluate the stability, binding activity, and specificity of these nanobodies. The results demonstrated that the nanobodies maintained robust binding activity within the temperature range of 20-40 ℃ and exhibited the highest binding activity at pH 7.0. Furthermore, the nanobodies were capable of tolerating a 10% methanol solution. Notably, among the nanobodies tested, VHH-12 displayed the highest binding activity to hemoglobin, with a half maximal effective concentration (EC50) of 10.63 nmol/L and a equilibrium dissociation constant (KD) of 2.94×10-7 mol/L. VHH-12 exhibited no cross-reactivity with a panel of eight proteins, such as ovalbumin and bovine serum albumin, while demonstrating partial cross-reactivity with hemoglobin derived from porcine, goat, rabbit, and bovine sources. In this study, a hemoglobin-specific high-affinity nanobody was successfully isolated, demonstrating potential applications in disease diagnosis and health monitoring.
Animals
;
Camelus/immunology*
;
Single-Domain Antibodies/immunology*
;
Hemoglobins/immunology*
;
Humans
;
Peptide Library
3.Effect of Licoflavone A on Proliferation and Glycolysis of Gastric Cancer Cells Under Hypoxic Conditions
Huancheng DONG ; Yun SU ; Hongxia GONG ; Wangjie CAO ; Minjie YUAN ; Yongqi LIU ; Yong HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(13):120-127
ObjectiveTo investigate the effects of licoflavone A on the proliferation and glycolysis of gastric cancer cells in the hypoxic environment. MethodHuman gastric cancer AGS cells were classified into five groups: Normoxia, hypoxia, and low-, medium-, and high-dose (25, 50, 100 μmol·L-1, respectively) licoflavone A. The cells in other groups except the normoxia group were cultured in the environment with 5% O2 for 48 h. The cell counting kit-8 (CCK-8) and colony formation assay were employed to examine the proliferation of AGS cells. Cell migration was detected by the scratch assay. The protein and mRNA levels of hypoxia-inducible factor 1-alpha (HIF-1α), glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), pyruvate kinase M2 (PKM2), and hexokinase Ⅱ (HK2) in AGS cells were measured by Western blotting and real-time quantitative polymerase chain reaction (Real-time PCR), respectively. The corresponding kits were used to determine glucose uptake and HK activity. ResultThe CCK-8 results showed that compared with the hypoxia group, the high- and medium-dose licoflavone A groups showed decreased proliferation rate of AGS cells at the time point of 24 h (P<0.01) and all the licoflavone A groups demonstrated decreased proliferation rate at the time point of 48 h (P<0.01). Compared with the normoxia group, the hypoxia group showed increased number of clone formation of AGS cells (P<0.01), which was decreased after the treatment with licoflavone A at high, medium, and low doses (P<0.01). Compared with the normoxia group, the hypoxia group showed increased migration of AGS cells (P<0.01), which was attenuated by the high, medium, and low doses of licoflavone A (P<0.01). Compared with the normoxia group, the hypoxia group showed up-regulated mRNA levels of GLUT1, LDHA, PKM2, and HK2 (P<0.05, P<0.01). Compared with those in the hypoxia group, the mRNA levels of GLUT1, LDHA, PKM2, and HK2 in the high-dose licoflavone A group, GLUT1, LDHA, and HK2 in the medium-dose licoflavone A group, and HK2 in the low-dose licoflavone A group were down-regulated (P<0.05, P<0.01). The protein levels of HIF-1α, GLUT1, LDHA, PKM2, and HK2 in the hypoxia group were higher than those in the normoxia group (P<0.05, P<0.01). Compared with those in the hypoxia group, the protein levels of HIF-1α, GLUT1, LDHA, PKM2, and HK2 in the high-dose licoflavone A group and HK2 in the medium- and low-dose licoflavone A groups were down-regulated (P<0.05, P<0.01). The glucose uptake and HK activity were elevated in the hypoxia group compared with those in the normoxia group (P<0.01). Compared with the hypoxia group, high-dose licoflavone A decreased the glucose uptake and HK activity, and medium-dose licoflavone A decreased the HK activity (P<0.01). ConclusionLicoflavone A inhibits the proliferation of AGS cells under hypoxic conditions by regulating glycolysis in gastric cancer.
4.Experts consensus on standard items of the cohort construction and quality control of temporomandibular joint diseases (2024)
Min HU ; Chi YANG ; Huawei LIU ; Haixia LU ; Chen YAO ; Qiufei XIE ; Yongjin CHEN ; Kaiyuan FU ; Bing FANG ; Songsong ZHU ; Qing ZHOU ; Zhiye CHEN ; Yaomin ZHU ; Qingbin ZHANG ; Ying YAN ; Xing LONG ; Zhiyong LI ; Yehua GAN ; Shibin YU ; Yuxing BAI ; Yi ZHANG ; Yanyi WANG ; Jie LEI ; Yong CHENG ; Changkui LIU ; Ye CAO ; Dongmei HE ; Ning WEN ; Shanyong ZHANG ; Minjie CHEN ; Guoliang JIAO ; Xinhua LIU ; Hua JIANG ; Yang HE ; Pei SHEN ; Haitao HUANG ; Yongfeng LI ; Jisi ZHENG ; Jing GUO ; Lisheng ZHAO ; Laiqing XU
Chinese Journal of Stomatology 2024;59(10):977-987
Temporomandibular joint (TMJ) diseases are common clinical conditions. The number of patients with TMJ diseases is large, and the etiology, epidemiology, disease spectrum, and treatment of the disease remain controversial and unknown. To understand and master the current situation of the occurrence, development and prevention of TMJ diseases, as well as to identify the patterns in etiology, incidence, drug sensitivity, and prognosis is crucial for alleviating patients′suffering.This will facilitate in-depth medical research, effective disease prevention measures, and the formulation of corresponding health policies. Cohort construction and research has an irreplaceable role in precise disease prevention and significant improvement in diagnosis and treatment levels. Large-scale cohort studies are needed to explore the relationship between potential risk factors and outcomes of TMJ diseases, and to observe disease prognoses through long-term follw-ups. The consensus aims to establish a standard conceptual frame work for a cohort study on patients with TMJ disease while providing ideas for cohort data standards to this condition. TMJ disease cohort data consists of both common data standards applicable to all specific disease cohorts as well as disease-specific data standards. Common data were available for each specific disease cohort. By integrating different cohort research resources, standard problems or study variables can be unified. Long-term follow-up can be performed using consistent definitions and criteria across different projects for better core data collection. It is hoped that this consensus will be facilitate the development cohort studies of TMJ diseases.
5.Establishment and validation of a model for predicting infiltration of pulmonary subsolid nodules by circulating tumor cells combined with imaging features
Xiang MA ; Ruijiang LIN ; Minjie MA ; Xiong CAO ; Qiuhao LIANG ; Zhiwei HAN ; Shangqing XU ; Biao HAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2023;30(02):198-204
Objective To evaluate the clinical radiological features combined with circulating tumor cells (CTCs) in the diagnosis of invasiveness evaluation of subsolid nodules in lung cancers. Methods Clinical data of 296 patients from the First Hospital of Lanzhou University between February 2019 and February 2021 were retrospectively included. There were 130 males and 166 females with a median age of 62.00 years. Patients were randomly divided into a training set and an internal validation set with a ratio of 3 : 1 by random number table method. The patients were divided into two groups: a preinvasive lesion group (atypical adenomatoid hyperplasia and adenocarcinoma in situ) and an invasive lesion group (microinvasive adenocarcinoma and invasive adenocarcinoma). Independent risk factors were selected by regression analysis of training set and a Nomogram prediction model was constructed. The accuracy and consistency of the model were verified by the receiver operating characteristic curve and calibration curve respectively. Subgroup analysis was conducted on nodules with different diameters to further verify the performance of the model. Specific performance metrics, including sensitivity, specificity, positive predictive value, negative predictive value and accuracy at the threshold were calculated. Results Independent risk factors selected by regression analysis for subsolid nodules were age, CTCs level, nodular nature, lobulation and spiculation. The Nomogram prediction mode provided an area under the curve (AUC) of 0.914 (0.872, 0.956), outperforming clinical radiological features model AUC [0.856 (0.794, 0.917), P=0.003] and CTCs AUC [0.750 (0.675, 0.825), P=0.001] in training set. C-index was 0.914, 0.894 and corrected C-index was 0.902, 0.843 in training set and internal validation set, respectively. The AUC of the prediction model in training set was 0.902 (0.848, 0.955), 0.913 (0.860, 0.966) and 0.873 (0.730, 1.000) for nodule diameter of 5-20 mm, 10-20 mm and 21-30 mm, respectively. Conclusion The prediction model in this study has better diagnostic value, and is more effective in clinical diagnosis of diseases.
6.Identification of laccase gene family members in peach and its relationship with chilling induced browning.
Kang WANG ; Minjie YANG ; Siyi WU ; Qingli LIU ; Shifeng CAO ; Wei CHEN ; Liyu SHI
Chinese Journal of Biotechnology 2022;38(1):264-274
The laccase (PpLAC) gene family members in peach fruit were identified and the relationship between their expression pattern and chilling induced browning were investigated. The study was performed using two varieties of peaches with different chilling tolerance, treated with or without exogenous γ-aminobutyric acid (GABA) during cold storage. Twenty-six genes were screened from the peach fruit genome. These genes were distributed on 6 chromosomes and each contained 5-7 exons. The PpLAC gene family members shared relatively similar gene structure and conserved motifs, and they were classified into 7 subgroups based on the cluster analysis. Transcriptome sequencing revealed that the expression levels of PpLAC7 and PpLAC9 exhibited an increasing pattern under low temperature storage, and displayed a similar trend with the browning index of peach fruit. Notably, GABA treatment reduced the degree of browning and inhibited the expression of PpLAC7 and PpLAC9. These results suggested that PpLAC7 and PpLAC9 might be involved in the browning of peach fruit during cold storage.
Food Storage
;
Fruit/genetics*
;
Laccase/genetics*
;
Prunus persica/genetics*
7.Advances of using antibody against B cell activating factor for treatment of autoimmune diseases.
Rongrong LIN ; Yulei CHEN ; Tengchuan JIN ; Minjie CAO
Chinese Journal of Biotechnology 2022;38(3):903-914
In recent decades, the treatment of autoimmune diseases has moved from the use of hormones and conventional immunosuppressive drugs to biological agents. B cell proliferation and maturation play crucial roles in the development of autoimmune diseases. The tumor necrosis factor superfamily ligand B cell activating factor (BAFF) and its receptor mediate B cell survival through regulating signaling pathways. Therefore, BAFF and its receptors are important therapeutic targets for the treatment of autoimmune diseases. This review describes the mechanism of BAFF and its receptor in the human body system and introduces the latest views on how over-activation of BAFF pathway promotes the development of autoimmune diseases including systemic lupus erythematosus, Sjogren's syndrome, and rheumatoid arthritis. In connection to the treatment of the above three diseases, this review discusses the clinical trials and application status of three BAFF-targeting antibody drugs, including Belimumab, Tabalumab and Atacicept. Finally, this review proposes new strategies that targeting the BAFF pathway to provide a new treatment for autoimmune diseases.
Autoimmune Diseases/drug therapy*
;
B-Cell Activating Factor/therapeutic use*
;
B-Lymphocytes
;
Humans
;
Interleukin-4
;
Lupus Erythematosus, Systemic/drug therapy*
8.A comparative study of pathological results of the transperineal and transrectal cognitive targeted prostate biopsy based on bpMRI
Dongliang CAO ; Yifei CHENG ; Feng QI ; Minjie PAN ; Linghui LIANG ; Lei ZHANG ; Gong CHENG ; Lixin HUA
Chinese Journal of Urology 2022;43(3):187-192
Objective:To compare the differences of prostate cancer (PCa) and clinically significant prostate cancer (CsPCa) positive rate and postoperative complications between transperineal cognitive prostate biopsy (COG-TPBx) and transrectal cognitive prostate biopsy (COG-TRBx) based on biparametric magnetic resonance imaging (bpMRI).Methods:The data of 276 patients undergoing prostate biopsy from January 2019 to June 2021 in the First Affiliated Hospital of Nanjing Medical University were retrospectively reviewed. 157 patients underwent COG-TPBx(TPBx group) and 119 patients underwent COG-TRBx (TRBx group). The average age [(66.39 ± 8.31) vs. (66.30 ± 8.42)years], body mass index (BMI) [(23.85±2.49) vs. (23.68±2.61) kg/m 2], PSA values [9.43(1.47-19.80) vs. 8.94(0.66-19.99) ng/ml], prostate volume [37.92(13.99-167.40) vs. 40.78(11.67-188.21) cm 3], PSA density [0.21(0.04-1.17) vs. 0.20(0.04-1.04) ng/(ml·cm 3)], and suspicious digital rectal examination [17.20% (27/157) vs. 21.10% (25/119) ] were not significantly different between TPBx group and TRBx group. The positive rate of PCa, CsPCa, as well as post-biopsy complications of the two groups were compared. Results:There were no significant differences in the positive rate of PCa [49.68%(78/157) vs. 47.06%(56/119), P=0.666] and CsPCa [38.22%(60/157) vs. 34.45%(41/119), P=0.520] between the two groups. In stratification analysis, TPBx group has a significantly higher positive rate of both PCa [54.69%(35/64)] and CsPCa[43.75%(28/64)] in apex zone than TRBx group[39.62%(21/53) and 20.75%(11/53), all P<0.05). Moreover, the postoperative complications were not significantly different in TPBx group compared to that in TRBx group [10.19% (16/157) vs. 12.61%(15/119), P= 0.567]. Conclusions:Our investigations revealed that the overall positive rate of PCa, CsPCa, and the complications were not statistically different between COG-TPBx and COG-TRBx. COG-TPBx has a significantly higher positive rate of both PCa and CsPCa in apex zone.
9.SARS-CoV-2 neutralizing monoclonal antibodies and nanobodies: a review.
Yulei CHEN ; Jinjin LIN ; Peiyi ZHENG ; Minjie CAO ; Tengchuan JIN
Chinese Journal of Biotechnology 2022;38(9):3173-3193
Coronavirus disease (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), with strong contagiousness, high susceptibility and long incubation period. cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain of the viral spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). Here, we briefly reviewed the mechanisms underlying the interaction between SARS-CoV-2 and ACE2, and summarized the latest research progress on SARS-CoV-2 neutralizing monoclonal antibodies and nanobodies, so as to better understand the development process and drug research direction of COVID-19. This review may facilitate understanding the development of neutralizing antibody drugs for emerging infectious diseases, especially for COVID-19.
Angiotensin-Converting Enzyme 2
;
Antibodies, Monoclonal
;
Antibodies, Neutralizing
;
Antibodies, Viral
;
COVID-19
;
Humans
;
Peptidyl-Dipeptidase A/metabolism*
;
Protein Binding
;
SARS-CoV-2
;
Single-Domain Antibodies
;
Spike Glycoprotein, Coronavirus/metabolism*
10.Digoxin Ameliorates Glymphatic Transport and Cognitive Impairment in a Mouse Model of Chronic Cerebral Hypoperfusion.
Jie CAO ; Di YAO ; Rong LI ; Xuequn GUO ; Jiahuan HAO ; Minjie XIE ; Jia LI ; Dengji PAN ; Xiang LUO ; Zhiyuan YU ; Minghuan WANG ; Wei WANG
Neuroscience Bulletin 2022;38(2):181-199
The glymphatic system plays a pivotal role in maintaining cerebral homeostasis. Chronic cerebral hypoperfusion, arising from small vessel disease or carotid stenosis, results in cerebrometabolic disturbances ultimately manifesting in white matter injury and cognitive dysfunction. However, whether the glymphatic system serves as a potential therapeutic target for white matter injury and cognitive decline during hypoperfusion remains unknown. Here, we established a mouse model of chronic cerebral hypoperfusion via bilateral common carotid artery stenosis. We found that the hypoperfusion model was associated with significant white matter injury and initial cognitive impairment in conjunction with impaired glymphatic system function. The glymphatic dysfunction was associated with altered cerebral perfusion and loss of aquaporin 4 polarization. Treatment of digoxin rescued changes in glymphatic transport, white matter structure, and cognitive function. Suppression of glymphatic functions by treatment with the AQP4 inhibitor TGN-020 abolished this protective effect of digoxin from hypoperfusion injury. Our research yields new insight into the relationship between hemodynamics, glymphatic transport, white matter injury, and cognitive changes after chronic cerebral hypoperfusion.
Animals
;
Brain Ischemia
;
Carotid Stenosis/drug therapy*
;
Cognitive Dysfunction/etiology*
;
Digoxin
;
Disease Models, Animal
;
Mice
;
Mice, Inbred C57BL
;
White Matter

Result Analysis
Print
Save
E-mail