1.Lnx1 expression in cortical neurons of rats with traumatic brain injury and mechanisms involved in secondary brain injury
Yanxia MA ; Yanwei YANG ; Yuhang MA ; Di LI ; Xiaoyan WANG ; Mingming ZOU ; Shanwen WEI
Chinese Journal of Tissue Engineering Research 2025;29(1):24-30
BACKGROUND:Apoptosis plays an important role in secondary brain injury.Therefore,to explore the pathophysiological mechanism of promoting nerve cell survival after traumatic brain injury provides a new direction and theoretical basis for the prevention and treatment of traumatic brain injury. OBJECTIVE:To explore the expression changes of Lnx1 molecule in mammalian cortical neurons after brain injury and the possible mechanism involved in secondary brain injury. METHODS:Eighty adult SD rats were divided into 20 male and 20 female mice in sham operation group and 20 male and 20 female mice in traumatic brain injury group.The traumatic brain injury rat model was established by heavy falling method.At 6,12,24,48,and 72 hours after brain injury,the expression of related molecules in damaged cortical neurons was analyzed by RT-qPCR,western blot assay,and immunofluorescence staining. RESULTS AND CONCLUSION:(1)The brain tissue of traumatic brain injury group was bleeding and obvious tissue injury could be observed.Water content of brain tissue increased after traumatic brain injury.(2)Compared with the sham operation group,the expression of Lnx1 in cortical neurons after traumatic brain injury increased significantly at 24 hours after injury.(3)After traumatic brain injury,the expression of PBK and BCR protein decreased,and the pro-survival factor ctgf increased.(4)These findings suggest that after traumatic brain injury,the expression of Lnx1 is up-regulated in neurons,which may be due to the decrease of the expression of its target molecules PBK and BCR,and further promote the expression of living factor ctgf,which has a protective effect on the damaged neurons.
2.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
3.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
4.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
5.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
6.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
7.Clinical efficacy of donafenib combined with PD-1 inhibitor and vascular intervention therapy in the treatment of unresectable hepatocellular carcinoma
Lan SU ; Jinghan ZHU ; Mingming LIU ; Yarong YANG ; Yu ZHANG ; Zutao CHEN
China Pharmacy 2025;36(21):2692-2698
OBJECTIVE To observe the clinical efficacy of donafenib combined with programmed death-1 (PD-1) inhibitors and vascular intervention therapy in the treatment of unresectable hepatocellular carcinoma (HCC). METHODS This retrospective study included 165 patients with unresectable HCC who were treated at the Fourth and First Affiliated Hospitals of Soochow University between June 2022 and March 2023. Among them, 89 patients received PD-1 inhibitors (tislelizumab or sintilimab, similarly hereinafter) plus vascular intervention (control group) and 76 patients received donafenib in combination with PD-1 inhibitors and vascular intervention (observation group). Short-term efficacy (3 months after treatment), long-term efficacy (2 years after treatment), the levels of liver function indexes [serum alanine amino-transferase (ALT), aspartate transferase (AST), and total bilirubin (TBil)] and tumor biomarkers [alpha fetoprotein (AFP), carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), and des-gamma-carboxy prothrombin (DCP)] before treatment and after 3 months of treatment, as well as the occurrence of adverse drug reaction (ADR) during treatment, were compared between the two groups. In addition, overall response rate (ORR) stratified by PD-1 inhibitor type was analyzed. RESULTS After treatment, the ORR was significantly higher in the observation group than in the control group (P<0.05); although the disease control rate was higher in the observation group compared to the control group, the difference was not statistically significant (P>0.05). The median overall survival of patients in the observation group was 16.9 months [95% confidence interval (CI): 14.2 to 19.1 months], which was significantly longer than that in the control group (12.4 months, 95%CI: 10.1 to 15.3 months) (P<0.05). Subgroup analysis result indicated that therapeutic advantage was consistent across both sintilimab and tislelizumab subgroups, with no significant heterogeneity (P>0.1, I 2<0.001%). Before treatment, there were no significant differences in liver function indexes or tumor marker levels between 2 groups (P>0.05). After treatment, both groups showed significant declines in these indicators compared with baseline (P<0.05), with greater reductions observed in the observation group (P<0.05). There were no statistically significant differences in overall incidence of ADR and grade ≥3 ADRs between the two groups (P>0.05). CONCLUSIONS For patients with unresectable HCC, the combination of donafenib, PD-1 inhibitors and vascular intervention therapy may achieve superior clinical outcomes without increasing the risk of treatment-related ADR.
8.Wrist arthroscopic Wafer surgery combined with triangular fibrocartilage complex insertion point reconstruction in treatment of Palmer type ⅡC combined with type ⅠB ulnar impingement syndrome.
Yong LI ; Mingming MA ; Xiaojun RUAN ; Yongbin FU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(1):59-63
OBJECTIVE:
To investigate the effectivess of arthroscopic Wafer surgery combined with triangular fibrocartilage complex (TFCC) insertion point reconstruction in the treatment of Palmer type ⅡC combined with typeⅠB ulnar impingement syndrome.
METHODS:
The clinical data of 14 patients with Parlmer type ⅡC combined with type ⅠB ulnar impingement syndrome who met the selection criteria between July 2021 and April 2024 were retrospectively analyzed. There were 7 males and 7 females with an average age of 43 years ranging from 16 to 59 years. The causes of injury were fall in 8 cases and sprain in 6 cases. The time from injury to operation ranged from 1 to 6 months, with an average of 2.3 months. Distal radioulnar joint instability was found in all cases. Arthroscopic Wafer surgery combined with TFCC insertion point reconstruction was used. The effectiveness was evaluated by comparing the wrist flexion-dorsiflexion range of motion, wrist ulnar deviation-radial deflection range of motion, forearm pronation-supination range of motion, visual analogue scale (VAS) score, and modified Mayo wrist score before and after operation.
RESULTS:
All patients were followed up 6-12 months, with an average of 9.1 months. The positive variation of ulna was (3.2±0.7) mm before operation, and the negative variation of ulna was (2.2±0.6) mm after operation. There was a significant difference in ulna variation between pre- and post-operation ( t=23.851, P<0.001). The pain symptoms and forearm rotation function of the patients after operation significantly improved. At last follow-up, the wrist flexion-dorsiflexion range of motion, wrist ulnar deviation-radial deflection range of motion, forearm pronation-supination range of motion, VAS score, and modified Mayo wrist score significantly improved when compared with those before operation ( P<0.05).
CONCLUSION
Arthroscopic Wafer surgery combined with TFCC insertion point reconstruction can effectively relieve wrist pain, enhance the stability of the distal radioulnar joint, and restore the function of the wrist in patients with Palmer type ⅡC combined with type ⅠB ulnar impingement syndrome.
Humans
;
Male
;
Adult
;
Arthroscopy/methods*
;
Female
;
Triangular Fibrocartilage/surgery*
;
Middle Aged
;
Range of Motion, Articular
;
Retrospective Studies
;
Wrist Joint/physiopathology*
;
Adolescent
;
Young Adult
;
Ulna/surgery*
;
Treatment Outcome
;
Wrist Injuries/surgery*
;
Plastic Surgery Procedures/methods*
;
Joint Instability/surgery*
9.Effects of lncRNA DHRS4-AS1 on proliferation, invasion, migration, and apoptosis of thyroid cancer cells by regulating the miR-221-3p/SOCS3 signaling axis.
Hui WANG ; Yu GUO ; Peipei ZHANG ; Haoyu YANG ; Chuntao TIAN ; Mingming JIN
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):798-805
Objective To explore the influences of long-chain noncoding RNA DHRS4-AS1 (lncRNA DHRS4-AS1) on the proliferation, invasion, migration, and apoptosis of thyroid cancer (TC) cells by regulating the microRNA-221-3p (miR-221-3p)/suppressor of cytokine signaling 3 (SOCS3) signaling axis. Methods Quantitative real-time PCR (qRT-PCR) was applied to detect the expression of lncRNA DHRS4-AS1, miR-221-3p, and SOCS3 mRNA in TC cell lines, and the optimal cell line was selected for subsequent experiments. FTC-133 cells were divided into five groups: control group, pcDNA-NC group, DHRS4-AS1 group, DHRS4-AS1 combined with agomir NC group, and DHRS4-AS1 combined with miR-221-3p-agomir group. Transfection efficiency was assessed using qRT-PCR. Dual luciferase reporter assays were applied to verify the targeting interaction between lncRNA DHRS4-AS1, SOCS3, and miR-221-3p. Western blot analysis was used to detect the expression of SOCS3 in FTC-133 cells. EdU method was used to measure cell proliferation. Flow cytometry was applied to measure the apoptosis of FTC-133 cells. Scratch experiment was applied to measure the migration of FTC-133 cells. Transwell chamber was applied to detect the invasion of FTC-133 cells. Nude mouse transplantation tumor experiment was used to observe the effect of lncRNA DHRS4-AS1 on the growth of TC transplantation tumors. Results Dual luciferase reporter assays showed a targeting relationship between lncRNA DHRS4-AS1, miR-221-3p, and SOCS3. LncRNA DHRS4-AS1 and SOCS3 were downregulated and miR-221-3p was upregulated in FTC-133 cells. Overexpression of lncRNA DHRS4-AS1 inhibited proliferation, migration, and invasion of FTC-133 cells, while inducing apoptosis. Conversely, miR-221-3p overexpression reversed these inhibitory effects, and suppressed the apoptosis. Nude mouse transplantation experiment observed that overexpression of lncRNA DHRS4-AS1 resulted in a decrease in tumor tissue quality and volume, and a decrease in miR-221-3p expression and an increase in SOCS3 expression. Conclusion LncRNA DHRS4-AS1 is downregulated in FTC-133 cells. Overexpression of lncRNA DHRS4-AS1 can inhibit the proliferation, invasion, and migration of TC cells and induce apoptosis by regulating the miR-221-3p/SOCS3 signaling axis.
MicroRNAs/metabolism*
;
Suppressor of Cytokine Signaling 3 Protein/metabolism*
;
Humans
;
RNA, Long Noncoding/metabolism*
;
Apoptosis/genetics*
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Thyroid Neoplasms/physiopathology*
;
Animals
;
Signal Transduction/genetics*
;
Cell Line, Tumor
;
Mice, Nude
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic
;
Mice
;
Mice, Inbred BALB C
10.Erratum: Author correction to "PRMT6 promotes tumorigenicity and cisplatin response of lung cancer through triggering 6PGD/ENO1 mediated cell metabolism" Acta Pharm Sin B 13 (2023) 157-173.
Mingming SUN ; Leilei LI ; Yujia NIU ; Yingzhi WANG ; Qi YAN ; Fei XIE ; Yaya QIAO ; Jiaqi SONG ; Huanran SUN ; Zhen LI ; Sizhen LAI ; Hongkai CHANG ; Han ZHANG ; Jiyan WANG ; Chenxin YANG ; Huifang ZHAO ; Junzhen TAN ; Yanping LI ; Shuangping LIU ; Bin LU ; Min LIU ; Guangyao KONG ; Yujun ZHAO ; Chunze ZHANG ; Shu-Hai LIN ; Cheng LUO ; Shuai ZHANG ; Changliang SHAN
Acta Pharmaceutica Sinica B 2025;15(4):2297-2299
[This corrects the article DOI: 10.1016/j.apsb.2022.05.019.].

Result Analysis
Print
Save
E-mail