1.Preparation of new hydrogels and their synergistic effects of immunochemotherapy
Wen-wen YAN ; Yan-long ZHANG ; Ming-hui CAO ; Zheng-han LIU ; Hong LEI ; Xiang-qian JIA
Acta Pharmaceutica Sinica 2025;60(2):479-487
In recent years, cancer treatment methods and means are becoming more and more diversified, and single treatment methods often have limited efficacy, while the synergistic effect of immunity combined with chemotherapy can inhibit tumor growth more effectively. Based on this, we constructed a sodium alginate hydrogel composite system loaded with chemotherapeutic agents and tumor vaccines (named SA-DOX-NA) with a view to the combined use of chemotherapeutic agents and tumor vaccines. Firstly, the tumor vaccine (named NA) degradable under acidic conditions was constructed by
2.Applications of EEG Biomarkers in The Assessment of Disorders of Consciousness
Zhong-Peng WANG ; Jia LIU ; Long CHEN ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(4):899-914
Disorders of consciousness (DOC) are pathological conditions characterized by severely suppressed brain function and the persistent interruption or loss of consciousness. Accurate diagnosis and evaluation of DOC are prerequisites for precise treatment. Traditional assessment methods are primarily based on behavioral scales, which are inherently subjective and rely on observable behaviors. Moreover, traditional methods have a high misdiagnosis rate, particularly in distinguishing minimally conscious state (MCS) from vegetative state/unresponsive wakefulness syndrome (VS/UWS). This diagnostic uncertainty has driven the exploration of objective, reliable, and efficient assessment tools. Among these tools, electroencephalography (EEG) has garnered significant attention for its non-invasive nature, portability, and ability to capture real-time neurodynamics. This paper systematically reviews the application of EEG biomarkers in DOC assessment. These biomarkers are categorized into 3 main types: resting-state EEG features, task-related EEG features, and features derived from transcranial magnetic stimulation-EEG (TMS-EEG). Resting-state EEG biomarkers include features based on spectrum, microstates, nonlinear dynamics, and brain network metrics. These biomarkers provide baseline representations of brain activity in DOC patients. Studies have shown their ability to distinguish different levels of consciousness and predict clinical outcomes. However, because they are not task-specific, they are challenging to directly associate with specific brain functions or cognitive processes. Strengthening the correlation between resting-state EEG features and consciousness-related networks could offer more direct evidence for the pathophysiological mechanisms of DOC. Task-related EEG features include event-related potentials, event-related spectral modulations, and phase-related features. These features reveal the brain’s responses to external stimuli and provide dynamic information about residual cognitive functions, reflecting neurophysiological changes associated with specific cognitive, sensory, or behavioral tasks. Although these biomarkers demonstrate substantial value, their effectiveness rely on patient cooperation and task design. Developing experimental paradigms that are more effective at eliciting specific EEG features or creating composite paradigms capable of simultaneously inducing multiple features may more effectively capture the brain activity characteristics of DOC patients, thereby supporting clinical applications. TMS-EEG is a technique for probing the neurodynamics within thalamocortical networks without involving sensory, motor, or cognitive functions. Parameters such as the perturbational complexity index (PCI) have been proposed as reliable indicators of consciousness, providing objective quantification of cortical dynamics. However, despite its high sensitivity and objectivity compared to traditional EEG methods, TMS-EEG is constrained by physiological artifacts, operational complexity, and variability in stimulation parameters and targets across individuals. Future research should aim to standardize experimental protocols, optimize stimulation parameters, and develop automated analysis techniques to improve the feasibility of TMS-EEG in clinical applications. Our analysis suggests that no single EEG biomarker currently achieves an ideal balance between accuracy, robustness, and generalizability. Progress is constrained by inconsistencies in analysis methods, parameter settings, and experimental conditions. Additionally, the heterogeneity of DOC etiologies and dynamic changes in brain function add to the complexity of assessment. Future research should focus on the standardization of EEG biomarker research, integrating features from resting-state, task-related, and TMS-EEG paradigms to construct multimodal diagnostic models that enhance evaluation efficiency and accuracy. Multimodal data integration (e.g., combining EEG with functional near-infrared spectroscopy) and advancements in source localization algorithms can further improve the spatial precision of biomarkers. Leveraging machine learning and artificial intelligence technologies to develop intelligent diagnostic tools will accelerate the clinical adoption of EEG biomarkers in DOC diagnosis and prognosis, allowing for more precise evaluations of consciousness states and personalized treatment strategies.
3.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
4.Characteristics of Traditional Chinese Medicine Syndromes in Patients with Concurrent Postmenopausal Osteoporosis and Knee Osteoarthritis
Xin CUI ; Huaiwei GAO ; Long LIANG ; Ming CHEN ; Shangquan WANG ; Ting CHENG ; Yili ZHANG ; Xu WEI ; Yanming XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):257-265
ObjectiveTo explore the characteristics of traditional Chinese medicine (TCM) syndromes in the patients with concurrent knee osteoarthritis (KOA) and postmenopausal osteoporosis (PMOP) and provide a scientific basis for precise TCM syndrome differentiation, diagnosis, and treatment of such concurrent diseases. MethodsA prospective, multicenter, cross-sectional clinical survey was conducted to analyze the characteristics of TCM syndromes in the patients with concurrent PMOP and KOA. Excel 2021 was used to statistically analyze the general characteristics of the included patients. Continuous variables were reported as
5.Characteristics of Traditional Chinese Medicine Syndromes in Patients with Concurrent Postmenopausal Osteoporosis and Knee Osteoarthritis
Xin CUI ; Huaiwei GAO ; Long LIANG ; Ming CHEN ; Shangquan WANG ; Ting CHENG ; Yili ZHANG ; Xu WEI ; Yanming XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):257-265
ObjectiveTo explore the characteristics of traditional Chinese medicine (TCM) syndromes in the patients with concurrent knee osteoarthritis (KOA) and postmenopausal osteoporosis (PMOP) and provide a scientific basis for precise TCM syndrome differentiation, diagnosis, and treatment of such concurrent diseases. MethodsA prospective, multicenter, cross-sectional clinical survey was conducted to analyze the characteristics of TCM syndromes in the patients with concurrent PMOP and KOA. Excel 2021 was used to statistically analyze the general characteristics of the included patients. Continuous variables were reported as
6.Steatotic liver disease in chronic hepatitis C related hepatocellular carcinoma: Inflictor or bystander?: Correspondence to editorial on “Dynamic change of metabolic dysfunction-associated steatotic liver disease in chronic hepatitis C patients after viral eradication: A nationwide registry study in Taiwan”
Chung-Feng HUANG ; Ming-Lun YEH ; Chia-Yen DAI ; Jee-Fu HUANG ; Wan-Long CHUANG ; Ming-Lung YU
Clinical and Molecular Hepatology 2025;31(1):e64-e66
7.Steatotic liver disease in chronic hepatitis C related hepatocellular carcinoma: Inflictor or bystander?: Correspondence to editorial on “Dynamic change of metabolic dysfunction-associated steatotic liver disease in chronic hepatitis C patients after viral eradication: A nationwide registry study in Taiwan”
Chung-Feng HUANG ; Ming-Lun YEH ; Chia-Yen DAI ; Jee-Fu HUANG ; Wan-Long CHUANG ; Ming-Lung YU
Clinical and Molecular Hepatology 2025;31(1):e64-e66
8.Steatotic liver disease in chronic hepatitis C related hepatocellular carcinoma: Inflictor or bystander?: Correspondence to editorial on “Dynamic change of metabolic dysfunction-associated steatotic liver disease in chronic hepatitis C patients after viral eradication: A nationwide registry study in Taiwan”
Chung-Feng HUANG ; Ming-Lun YEH ; Chia-Yen DAI ; Jee-Fu HUANG ; Wan-Long CHUANG ; Ming-Lung YU
Clinical and Molecular Hepatology 2025;31(1):e64-e66
9.Exploration of differences in decoction phase state, material form, and crystal form between Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum and Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O based on supramolecules of traditional Chinese medicine.
Yao-Zhi ZHANG ; Wen-Min PI ; Xin-Ru TAN ; Ran XU ; Xu WANG ; Ming-Yang XU ; Xue-Mei HUANG ; Peng-Long WANG
China Journal of Chinese Materia Medica 2025;50(2):412-421
With Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum drug pair as the research object, supramolecular chemistry of traditional Chinese medicine(TCM) was used to study differences between the compatibility of herbal medicine Glycyrrhizae Radix et Rhizoma with mineral medicine Gypsum Fibrosum and its main component CaSO_4·2H_2O, so as to preliminarily discuss the scientific connotation of compatibility of Gypsum Fibrosum in clinical application. A Malvern particle sizer, a scanning electron microscope(SEM), and a conductivity meter were used to observe and determine the physical properties such as microscopic morphology, particle size, and conductivity of Gypsum Fibrosum, CaSO_4·2H_2O, and water decoctions of them with Glycyrrhizae Radix et Rhizoma. An inductively coupled plasma optical emission spectrometer(ICP-OES) was employed to detect the inorganic metal elements in Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum and Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O. Isothermal titration calorimetry(ITC) was conducted to quantify the interactions of Gypsum Fibrosum and CaSO_4·2H_2O with Glycyrrhizae Radix et Rhizoma. A Fourier transform infrared spectrometer(FTIR) was used to analyze the characteristic absorption peak change of Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum and Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O. X-ray diffraction(XRD) was performed to determine the crystal structure and phase composition of Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum and Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O. Further, glycyrrhizic acid(GA) was substituted for Glycyrrhizae Radix et Rhizoma to co-decoct with Gypsum Fibrosum, CaSO_4·2H_2O, and freeze-dried powder of their respective water decoctions. The results of XRD were used for verification analysis. The results showed that although CaSO_4·2H_2O is the main component of Gypsum Fibrosum, there were significant differences between their decoctions and between the decoctions of them with Glycyrrhizae Radix et Rhizoma. Specifically,(1) Both CaSO_4·2H_2O and Gypsum Fibrosum were amorphous fibrous. However, the particle size and conductivity were significantly different between the decoctions of CaSO_4·2H_2O and Gypsum Fibrosum alone.(2) Under SEM, Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O was a hybrid system with various morphologies, while Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum presented uniform nanoparticles.(3) The particle sizes and conductivities of Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O and Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum were significantly different and did not follow the same tendency as those of the decoctions of CaSO_4·2H_2O and Gypsum Fibrosum alone.(4) Compared with Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O, Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum had stronger molecular binding ability and functional group structure change.(5) The crystal form was largely different between the freeze-dried powder of CaSO_4·2H_2O decoction and Gypsum Fibrosum decoction, and their crystal forms were also significantly different from those of the freeze-dried powder of Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O and Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum decoctions. The reason for the series of differences is that Gypsum Fibrosum is richer in trace elements than CaSO_4·2H_2O. The XRD results of GA-Gypsum Fibrosum and GA-CaSO_4·2H_2O decoctions further prove the importance of trace elements in Gypsum Fibrosum for supramolecule formation. This research preliminarily reveals the influence of compatibility of Gypsum Fibrosum or CaSO_4·2H_2O on decoction phase state, material form, and crystal form, providing a basis for the rational clinical application of Gypsum Fibrosum.
Drugs, Chinese Herbal/chemistry*
;
Calcium Sulfate/chemistry*
;
Glycyrrhiza/chemistry*
;
Crystallization
;
Particle Size
;
Medicine, Chinese Traditional
;
Rhizome/chemistry*
10.Xinyang Tablets ameliorate ventricular remodeling in heart failure via FTO/m6A signaling pathway.
Dong-Hua LIU ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Xiao-Jiao ZHANG ; Shi-Hao NI ; Wen-Jie LONG ; Hui-Li LIAO ; Zhong-Qi YANG ; Xiao-Ming DONG
China Journal of Chinese Materia Medica 2025;50(4):1075-1086
The study was conducted to investigate the mechanism of Xinyang Tablets( XYP) in modulating the fat mass and obesity-associated protein(FTO)/N6-methyladenosine(m6A) signaling pathway to ameliorate ventricular remodeling in heart failure(HF). A mouse model of HF was established by transverse aortic constriction(TAC). Mice were randomized into sham, model, XYP(low, medium, and high doses), and positive control( perindopril) groups(n= 10). From day 3 post-surgery, mice were administrated with corresponding drugs by gavage for 6 consecutive weeks. Following the treatment, echocardiography was employed to evaluate the cardiac function, and RT-qPCR was employed to determine the relative m RNA levels of key markers, including atrial natriuretic peptide( ANP), B-type natriuretic peptide( BNP), β-myosin heavy chain(β-MHC), collagen type I alpha chain(Col1α), collagen type Ⅲ alpha chain(Col3α), alpha smooth muscle actin(α-SMA), and FTO. The cardiac tissue was stained with Masson's trichrome and wheat germ agglutinin(WGA) to reveal the pathological changes. Immunohistochemistry was employed to detect the expression levels of Col1α, Col3α, α-SMA, and FTO in the myocardial tissue. The m6A modification level in the myocardial tissue was measured by the m6A assay kit. An H9c2 cell model of cardiomyocyte injury was induced by angiotensin Ⅱ(AngⅡ), and small interfering RNA(siRNA) was employed to knock down FTO expression. RT-qPCR was conducted to assess the relative m RNA levels of FTO and other genes associated with cardiac remodeling. The m6A modification level was measured by the m6A assay kit, and Western blot was employed to determine the phosphorylated phosphatidylinositol 3-kinase(p-PI3K)/phosphatidylinositol 3-kinase(PI3K) and phosphorylated serine/threonine kinase(p-Akt)/serine/threonine kinase(Akt) ratios in cardiomyocytes. The results of animal experiments showed that the XYP treatment significantly improved the cardiac function, reduced fibrosis, up-regulated the m RNA and protein levels of FTO, and lowered the m6A modification level compared with the model group. The results of cell experiments showed that the XYP-containing serum markedly up-regulated the m RNA level of FTO while decreasing the m6A modification level and the p-PI3K/PI3K and p-Akt/Akt ratios in cardiomyocytes. Furthermore, FTO knockdown reversed the protective effects of XYP-containing serum on Ang Ⅱ-induced cardiomyocyte hypertrophy. In conclusion, XYP may ameliorate ventricular remodeling by regulating the FTO/m6A axis, thereby inhibiting the activation of the PI3K/Akt signaling pathway.
Animals
;
Ventricular Remodeling/drug effects*
;
Heart Failure/physiopathology*
;
Signal Transduction/drug effects*
;
Mice
;
Male
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Adenosine/analogs & derivatives*
;
Myocytes, Cardiac/metabolism*
;
Disease Models, Animal

Result Analysis
Print
Save
E-mail