1.Rehmanniae Radix Iridoid Glycosides Protect Kidneys of Diabetic Mice by Regulating TGF-β1/Smads Signaling Pathway
Hongwei ZHANG ; Ming LIU ; Huisen WANG ; Wenjing GE ; Xuexia ZHANG ; Qian ZHOU ; Huani LI ; Suqin TANG ; Gengsheng LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):56-66
ObjectiveTo investigate the protective effect of Rehmanniae Radix iridoid glycosides (RIG) on the kidney tissue of streptozotocin (STZ)-induced diabetic mice and explore the underlying mechanism. MethodsTwelve of 72 male C57BL/6J mice were randomly selected as the normal group, and the remaining 60 mice were fed with a high-fat diet for six weeks combined with injection of 60 mg·kg-1 STZ for 4 days to model type 2 diabetes mellitus. The successfully modeled mice were randomized into model, metformin (250 mg·kg-1), catalpol (100 mg·kg-1), low-dose RIG (RIG-L, 200 mg·kg-1) and high-dose RIG (RIG-H, 400 mg·kg-1) groups (n=11). Mice in each group were administrated with corresponding drugs, while those in the normal group and model group were administrated with the same dose of distilled water by gavage once a day. After 8 weeks of intervention, an oral glucose tolerance test (OGTT) was performed, and the area under the curve (AUC) was calculated. After mice were sacrificed, both kidneys were collected. The body weight, kidney weight, and fasting blood glucose (FBG) were measured. Biochemical assays were performed to measure the serum levels of triglycerides (TG), total cholesterol (TC), serum creatinine (SCr), and blood urea nitrogen (BUN). Enzyme-linked immunosorbent assay (ELISA) was employed to determine the serum level of fasting insulin (FINS), and the insulin sensitivity index (ISI) and homeostatic model assessment for insulin resistance (HOMA-IR) were calculated. The pathological changes in kidneys of mice were observed by hematoxylin-eosin staining and Masson staining. The immunohistochemical method (IHC) was employed to assess the expression of interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-α(TNF-α), transforming growth factor-β1 (TGF-β1), and collagen-3 (ColⅢ) in the kidney tissue. The protein levels of TGF-β1, cell signal transduction molecule 3 (Smad3), matrix metalloproteinase-9 (MMP-9), and ColⅢ in kidneys of mice were determined by Western blot. ResultsCompared with the normal group, the model group showcased decreased body weight and ISI (P<0.01), increased kidney weight, FBG, AUC, FINS, HOMA-IR, TC, TG, SCr, and BUN (P<0.01), glomerular hypertrophy, capsular space narrowing, and collagen deposition in the kidney, up-regulated protein levels of IL-1, IL-6, TNF-α, TGF-β1, ColⅢ, and Smad3 (P<0.01), and down-regulated protein level of MMP-9 (P<0.01) in the kidney tissue. Compared with the model group, the treatment groups had no significant difference in the body weight and decreased kidney weight (P<0.05, P<0.01). The FBG level declined in the RIG-H group after treatment for 4-8 weeks and in the metformin, catalpol, and RIG-L groups after treatment for 6-8 weeks (P<0.01). The AUC in the RIG-L, RIG-H, and metformin groups decreased (P<0.05, P<0.01). The levels of TC, SCr, and BUN in the serum of mice in each treatment group became lowered (P<0.05, P<0.01). The level of TG declined in the RIG-L, RIG-H, and metformin groups (P<0.05, P<0.01). The serum level of FINS declined in the catalpol, RIG-L, and metformin groups (P<0.01). Compared with the model group, the treatment groups showed decreased HOMA-IR (P<0.01), increased ISI (P<0.01), alleviated pathological changes in the kidney tissue, and down-regulated expression of IL-1 and TGF-β1. In addition, the protein levels of IL-6, TNF-α, and ColⅢ in the RIG-H and metformin groups and IL-6 and TNF-α in the RIG-L group were down-regulated (P<0.05, P<0.01), and the protein levels of IL-6, TNF-α, and ColⅢ in the catalpol group and ColⅢ in the RIG-L group showed a decreasing trend without statistical difference. The protein levels of TGF-β1, Smad3, and ColⅢ in the RIG-H and metformin groups were down-regulated (P<0.01). Compared with that in the model group, the protein level of MMP-9 was up-regulated in each treatment group (P<0.01). ConclusionRIG can improve the renal structure and function of diabetic mice by regulating the TGF-β1/Smads signaling pathway.
2.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
Background:
and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture.
Methods:
A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture.
Results:
The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05).
Conclusion
The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population.
3.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
Background:
and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture.
Methods:
A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture.
Results:
The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05).
Conclusion
The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population.
4.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
Background:
and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture.
Methods:
A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture.
Results:
The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05).
Conclusion
The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population.
5.The Functional Diversity and Regulatory Mechanism of Clathrin Plaques
Yi-Ge ZHAO ; Zhao-Hong JIANG ; Qian-Yi ZHOU ; Zhi-Ming CHEN
Progress in Biochemistry and Biophysics 2025;52(8):1958-1971
Clathrin-mediated endocytosis (CME) is a critical process by which cells internalize macromolecular substances and initiate vesicle trafficking, serving as the foundation for many cellular activities. Central to this process are clathrin-coated structures (CCSs), which consist of clathrin-coated pits (CCPs) and clathrin plaques. While clathrin-coated pits are well-established in the study of endocytosis, clathrin plaques represent a more recently discovered but equally important component of this system. These plaques are large, flat, and extended clathrin-coated assemblies found on the cytoplasmic membrane. They are distinct from the more typical clathrin-coated pits in terms of their morphology, larger surface area, and longer lifespan. Recent research has revealed that clathrin plaques play roles that go far beyond endocytosis, contributing to diverse cellular processes such as cellular adhesion, mechanosensing, migration, and pathogen invasion. Unlike traditional clathrin-coated pits, which are transient and dynamic structures involved primarily in the internalization of molecules, clathrin plaques are more stable and extensive, often persisting for extended periods. Their extended lifespan suggests that they serve functions beyond the typical endocytic role, making them integral to various cellular processes. For instance, clathrin plaques are involved in the regulation of intercellular adhesion, allowing cells to better adhere to one another or to the extracellular matrix, which is crucial for tissue formation and maintenance. Furthermore, clathrin plaques act as mechanosensitive hubs, enabling the cell to sense and respond to mechanical stress, a feature that is essential for processes like migration, tissue remodeling, and even cancer progression. Recent discoveries have also highlighted the role of clathrin plaques in cellular signaling. These plaques can serve as scaffolds for signaling molecules, orchestrating the activation of various pathways that govern cellular behavior. For example, the recruitment of actin-binding proteins such as F-actin and vinculin to clathrin plaques can influence cytoskeletal dynamics, helping cells adapt to mechanical changes in their environment. This recruitment also plays a pivotal role in regulating cellular migration, which is crucial for developmental processes. Additionally, clathrin plaques influence receptor-mediated signal transduction by acting as platforms for the assembly of signaling complexes, thereby affecting processes such as growth factor signaling and cellular responses to extracellular stimuli. Despite the growing body of evidence that supports the involvement of clathrin plaques in a wide array of cellular functions, much remains unknown about the precise molecular mechanisms that govern their formation, maintenance, and turnover. For example, the factors that regulate the recruitment of clathrin and other coat proteins to form plaques, as well as the signaling molecules that coordinate plaque dynamics, remain areas of active research. Furthermore, the complex interplay between clathrin plaques and other cellular systems, such as the actin cytoskeleton and integrin-based adhesion complexes, needs further exploration. Studies have shown that clathrin plaques can respond to mechanical forces, with recent findings indicating that they act as mechanosensitive structures that help the cell adapt to changing mechanical environments. This ability underscores the multifunctional nature of clathrin plaques, which, in addition to their role in endocytosis, are involved in cellular processes such as mechanotransduction and adhesion signaling. In summary, clathrin plaques represent a dynamic and versatile component of clathrin-mediated endocytosis. They play an integral role not only in the internalization of macromolecular cargo but also in regulating cellular adhesion, migration, and signal transduction. While much has been learned about their structural and functional properties, significant questions remain regarding the molecular mechanisms that regulate their formation and their broader role in cellular physiology. This review highlights the evolving understanding of clathrin plaques, emphasizing their importance in both endocytosis and a wide range of other cellular functions. Future research is needed to fully elucidate the mechanisms by which clathrin plaques contribute to cellular processes and to better understand their implications for diseases, including cancer and tissue remodeling. Ultimately, clathrin plaques are emerging as crucial hubs that integrate mechanical, biochemical, and signaling inputs, providing new insights into cellular function and the regulation of complex cellular behaviors.
6.Temporal trend in mortality due to congenital heart disease in China from 2008 to 2021.
Youping TIAN ; Xiaojing HU ; Qing GU ; Miao YANG ; Pin JIA ; Xiaojing MA ; Xiaoling GE ; Quming ZHAO ; Fang LIU ; Ming YE ; Weili YAN ; Guoying HUANG
Chinese Medical Journal 2025;138(6):693-701
BACKGROUND:
Congenital heart disease (CHD) is a leading cause of birth defect-related mortality. However, more recent CHD mortality data for China are lacking. Additionally, limited studies have evaluated sex, rural-urban, and region-specific disparities of CHD mortality in China.
METHODS:
We designed a population-based study using data from the Dataset of National Mortality Surveillance in China between 2008 and 2021. We calculated age-adjusted CHD mortality using the sixth census data of China in 2010 as the standard population. We assessed the temporal trends in CHD mortality by age, sex, area, and region from 2008 to 2021 using the joinpoint regression model.
RESULTS:
From 2008 to 2021, 33,534 deaths were attributed to CHD. The period witnessed a two-fold decrease in the age-adjusted CHD mortality from 1.61 to 0.76 per 100,000 persons (average annual percent change [AAPC] = -5.90%). Females tended to have lower age-adjusted CHD mortality than males, but with a similar decline rate from 2008 to 2021 (females: AAPC = -6.15%; males: AAPC = -5.84%). Similar AAPC values were observed among people living in urban (AAPC = -6.64%) and rural (AAPC = -6.12%) areas. Eastern regions experienced a more pronounced decrease in the age-adjusted CHD mortality (AAPC = -7.86%) than central (AAPC = -5.83%) and western regions (AAPC = -3.71%) between 2008 and 2021. Approximately half of the deaths (46.19%) due to CHD occurred during infancy. The CHD mortality rates in 2021 were lower than those in 2008 for people aged 0-39 years, with the largest decrease observed among children aged 1-4 years (AAPC = -8.26%), followed by infants (AAPC = -7.01%).
CONCLUSIONS
CHD mortality in China has dramatically decreased from 2008 to 2021. The slower decrease in CHD mortality in the central and western regions than in the eastern regions suggested that public health policymakers should pay more attention to health resources and health education for central and western regions.
Humans
;
Heart Defects, Congenital/mortality*
;
Male
;
Female
;
China/epidemiology*
;
Infant
;
Child, Preschool
;
Adult
;
Child
;
Adolescent
;
Infant, Newborn
;
Middle Aged
;
Young Adult
;
Aged
;
Rural Population
7.Identification and expression analysis of B3 gene family in Panax ginseng.
Yu-Long WANG ; Ai-Min WANG ; Jing-Hui YU ; Si-Zhang LIU ; Ge JIN ; Kang-Yu WANG ; Ming-Zhu ZHAO ; Yi WANG ; Mei-Ping ZHANG
China Journal of Chinese Materia Medica 2025;50(16):4593-4609
Panax ginseng as a perennial herb of Araliaceae, exhibits pharmacological effects such as central nervous system stimulation, anti-tumor properties, and cardiovascular and cerebrovascular protection. The B3 gene family plays a crucial role in growth and development, antioxidant activity, stress resistance, and secondary metabolism regulation of plants and has been extensively studied in various plants. However, the identification and analysis of the B3 gene family in P. ginseng have not been reported. In this study, a total of 145 B3 genes(PgB3s) with complete open reading frames(ORF) were identified from P. ginseng and classified into five subfamilies based on domain types. Through correlation analysis with ginsenoside content, SNP/InDels analysis, and interaction analysis with key enzyme genes, 15 PgB3 transcripts were found to be significantly correlated with ginsenoside content and exhibited a close interaction network with key enzyme genes involved in ginsenoside biosynthesis, which indicated that these genes may participate in the regulation of ginsenoside biosynthesis. Additionally, this study found that PgB3 genes exhibited induced expression in response to methyl jasmonate(MeJA) stress, which aligned with the presence of abundant stress response elements in their promoters, confirming the important role of the B3 gene family in P. ginseng in stress resistance. The results of this study revealed the potential functions of PgB3 genes in ginsenoside biosynthesis and stress response, providing a significant theoretical basis for further research on the functions of PgB3 genes and their regulatory mechanisms.
Panax/metabolism*
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Ginsenosides/biosynthesis*
;
Multigene Family
;
Phylogeny
8.Protocol for development of Guideline for Interventions on Cervical Spine Health.
Jing LI ; Guang-Qi LU ; Ming-Hui ZHUANG ; Xin-Yue SUN ; Ya-Kun LIU ; Ming-Ming MA ; Li-Guo ZHU ; Zhong-Shi LI ; Wei CHEN ; Ji-Ge DONG ; Le-Wei ZHANG ; Jie YU
China Journal of Orthopaedics and Traumatology 2025;38(10):1083-1088
Cervical spine health issues not only seriously affect patients' quality of life but also impose a heavy burden on the social healthcare system. Existing guidelines lack sufficient clinical guidance on lifestyle and work habits, such as exercise, posture, daily routine, and diet, making it difficult to meet practical needs. To address this, relying on the China Association of Chinese Medicine, Wangjing Hospital of China Academy of Chinese Medical Sciences took the lead and joined hands with more than ten institutions to form a multidisciplinary guideline development group. For the first time, the group developed the Guidelines for Cervical Spine Health Intervention based on evidence-based medicine methods, strictly following the standardized procedures outlined in the World Health Organization Handbook for Guideline Development and the Guiding Principles for the Formulation/Revision of Clinical Practice Guidelines in China (2022 Edition). This proposal systematically explains the methods and steps for developing the guideline, aiming to make the guideline development process scientific, standardized, and transparent.
Humans
;
Practice Guidelines as Topic/standards*
;
Cervical Vertebrae
;
China
9.Clinical and genetic features of 5 neonates with centronuclear myopathy caused by MTM1 gene variation.
Tian XIE ; Jia-Jing GE ; Zi-Ming ZHANG ; Ding-Wen WU ; Yan-Ping XU ; Li-Ping SHI ; Xiao-Lu MA ; Zheng CHEN
Chinese Journal of Contemporary Pediatrics 2025;27(9):1071-1075
OBJECTIVES:
To study clinical manifestations and gene mutation features of neonates with centronuclear myopathy.
METHODS:
A retrospective analysis was conducted on the medical data of 5 neonates with centronuclear myopathy diagnosed in the Neonatal Intensive Care Unit of Children's Hospital, Zhejiang University School of Medicine from January 2020 to August 2024. The data included gender, gestational age, birth weight, Apgar score, clinical manifestations, creatine kinase level, electromyography, genetic testing results and the outcomes of the infants.
RESULTS:
All 5 male neonates had a history of postpartum asphyxia and resuscitation. They all presented with hypotonia, myasthenia, and respiratory failure; two neonates also had swallowing dysfunction. Of the five neonates, three had normal creatine kinase levels, while two had slightly elevated levels. Electromyography was performed for three neonates, among whom two had myogenic damage. MTM1 gene mutations were identified by genetic testing in all five neonates, including two nonsense mutations and three missense mutations, among which one variant had not been previously reported. Four mutations were inherited from the mother, and the other one was a de novo mutation. The five neonates showed no clinical improvement following treatment, failed weaning from mechanical ventilation, and ultimately died after withdrawal of life-sustaining therapy.
CONCLUSIONS
Centronuclear myopathy caused by MTM1 gene mutation often has a severe phenotype and a poor prognosis, and it should be considered for neonates with hypotonia and myasthenia after birth. Genetic testing should be performed as soon as possible.
Humans
;
Myopathies, Structural, Congenital/genetics*
;
Male
;
Infant, Newborn
;
Retrospective Studies
;
Mutation
;
Female
;
Protein Tyrosine Phosphatases, Non-Receptor/genetics*
10.Impacts of advanced male age on sperm DNA methylation and subsequent development of embryos and offspring.
Wen LIU ; Ge FANG ; Xiao LI ; Shao-Ming LU
National Journal of Andrology 2025;31(2):172-176
Male factors contribute to infertility at roughly the same rate as female factors, and sperm DNA methylation in advanced-aged males directly affects semen parameters and significantly reduces fertility and increases the miscarriage rate of spouses. Many adverse outcomes of reproductive health are associated with advanced reproductive age of men, and few studies are reported on the influence of paternal age on the health of the offspring. The role of advanced age in human sperm DNA methylation variation and mechanism of its subsequent influence on the offspring health remain unclear. Attention should be paid to the influence of reproductive age on pregnancy outcomes in this population. This reviews focuses on the impacts of advanced male age on sperm DNA methylation and consequently on reproductive outcomes and the offspring, with elucidation of its underlying mechanisms, aiming to provide some more useful evidence for solving related clinical problems.
Humans
;
DNA Methylation
;
Male
;
Spermatozoa/metabolism*
;
Female
;
Pregnancy
;
Paternal Age
;
Pregnancy Outcome
;
Embryonic Development

Result Analysis
Print
Save
E-mail