1.Human amniotic mesenchymal stem cells overexpressing neuregulin-1 promote skin wound healing in mice
Taotao HU ; Bing LIU ; Cheng CHEN ; Zongyin YIN ; Daohong KAN ; Jie NI ; Lingxiao YE ; Xiangbing ZHENG ; Min YAN ; Yong ZOU
Chinese Journal of Tissue Engineering Research 2025;29(7):1343-1349
BACKGROUND:Neuregulin 1 has been shown to be characterized in cell proliferation,differentiation,and vascular growth.Human amniotic mesenchymal stem cells are important seed cells in the field of tissue engineering,and have been shown to be involved in tissue repair and regeneration. OBJECTIVE:To construct human amniotic mesenchymal stem cells overexpressing neuregulin 1 and investigate their proliferation and migration abilities,as well as their effects on wound healing. METHODS:(1)Human amniotic mesenchymal stem cells were in vitro isolated and cultured and identified.(2)A lentivirus overexpressing neuregulin 1 was constructed.Human amniotic mesenchymal stem cells were divided into empty group,neuregulin 1 group,and control group,and transfected with empty lentivirus and lentivirus overexpressing neuregulin 1,or not transfected,respectively.(3)Edu assay was used to detect the proliferation ability of the cells of each group,and Transwell assay was used to detect the migration ability of the cells.(4)The C57 BL/6 mouse trauma models were constructed and randomly divided into control group,empty group,neuregulin 1 group,with 8 mice in each group.Human amniotic mesenchymal stem cells transfected with empty lentivirus or lentivirus overexpressing neuregulin-1 were uniformly injected with 1 mL at multiple local wound sites.The control group was injected with an equal amount of saline.(5)The healing of the trauma was observed at 1,7,and 14 days after model establishment.Histological changes of the healing of the trauma were observed by hematoxylin-eosin staining.The expression of CD31 on the trauma was observed by immunohistochemistry. RESULTS AND CONCLUSION:(1)Human amniotic mesenchymal stem cells overexpressing neuregulin-1 were successfully constructed.The mRNA and protein expression of intracellular neuregulin 1 was significantly up-regulated compared with the empty group(P<0.05).(2)The overexpression of neuregulin 1 promoted the migratory ability(P<0.01)and proliferative ability of human amniotic mesenchymal stem cells(P<0.05).(3)Human amniotic mesenchymal stem cells overexpressing neuregulin 1 promoted wound healing in mice(P<0.05)and wound angiogenesis(P<0.05).The results showed that overexpression of neuregulin 1 resulted in an increase in the proliferative and migratory capacities of human amniotic mesenchymal stem cells,significantly promoting wound healing and angiogenesis.
2.Intense pulsed light combined with Tobramycin and Dexamethasone ophthalmic ointment for the treatment of dry eye with meibomian gland dysfunction after phacoemulsification
Huanrong JIANG ; Xiaojian YIN ; Min ZHOU ; Yannan ZHU ; Li REN
International Eye Science 2025;25(4):676-679
AIM: To investigate the efficacy and safety of intense pulsed light(IPL)combined with meibomian gland massage and tobramycin and dexamethasone ophthalmic ointment in treating dry eye(DE)with meibomian gland dysfunction after phacoemulsification(PHACO).METHODS: A total of 100 cases(100 eyes)of DE patients with meibomian gland dysfunction after receiving PHACO in our hospital from January 2022 to December 2023 were selected and divided into control group(receiving meibomian gland massage + eye ointment)and observation group(receiving IPL + meibomian gland massage + eye cream treatment)according to different treatment methods, with 50 cases(50 eyes)in each group. The score of meibomian gland secretion, tear film break-up time(BUT), clinical efficacy and safety were compared between the two groups.RESULTS: After treatment, the scores of the meibomian gland secretion status decreased in both groups, and the observation group had lower scores(all P<0.05). After treatment, the BUT increased in both groups, and the observation group had higher BUT(P<0.05). The clinical efficacy of the observation group(98%)was higher than that of the control group(84%; P<0.05). In addition, the incidence of adverse reactions in the observation group(6%)was lower than that in the control group(20%; P<0.05).CONCLUSION: IPL combined with meibomian gland massage and tobramycin and dexamethasone ophthalmic ointment can effectively improve the clinical efficacy of DE patients after PHACO surgery, reduce adverse reactions, and have high safety.
3.Influence of corneal fluorescein sodium staining on test results of iTrace visual function analyzer
Xin YIN ; Qingyan LIU ; Xiao SHAO ; Min XUE ; Yao LU ; Shuying MA ; Chunsheng SHI
International Eye Science 2025;25(4):680-684
AIM: To investigate the impact of corneal fluorescein sodium(NaF)staining on the examination results of iTrace visual function analyzer(iTrace).METHODS: Prospective cohort study. Totally 100 patients(100 eyes)with ametropia who visited the outpatient department of Anhui Eye Hospital from April to November 2024 were recruited. They were divided into an experimental group and a control group, with 50 patients(50 eyes, and only the right eyes were selected for inclusion)in each group. In the experimental group, corneal staining was performed using fluorescein sodium staining test strips, while in the control group, 1 drop of 0.9% normal saline was instilled into the eyes. The iTrace examination was conducted before the intervention and at 5, 10, and 20 min after the intervention. The total corneal higher-order aberrations, spherical aberration, coma aberration, trefoil aberration, best sphere value(RO value), asphericity factor(Q value), and corneal vertical refractive power difference(IS value)at each time of examination were recorded and compared.RESULTS: There was no statistically significant difference in the baseline levels between the two groups(all P>0.05). Intra-group comparison revealed that the total higher-order aberrations, spherical aberration, coma aberration, and trefoil aberration measured 5 min after NaF staining in the experimental group were significantly increased compared with those before staining(all P<0.05). Inter-group comparison showed that the changes(differences from the baseline)in the total corneal higher-order aberrations, spherical aberration, coma aberration, and trefoil aberration measured by iTrace 5 min after the intervention in the experimental group were significantly greater than those in the control group(all P<0.05). There was no statistically significant difference in the changes(differences from the baseline)of various iTrace parameters measured at 10 and 20 min after the intervention between the two groups(all P>0.05). There was no statistical significance in the RO value, Q value, and IS value in the two groups(all P>0.05).CONCLUSION: Corneal NaF staining can cause a short-term increase in the wavefront aberration values(total corneal higher-order aberrations, spherical aberration, coma aberration, trefoil aberration)measured by iTrace, and it gradually disappears with the passage of time. However, it has no impact on the measurement of corneal topography parameters(RO value, Q value, IS value).
4.Andrographolide as a Multi-Target Therapeutic Agent in Diabetic Nephropathy: Insights into STAT3/PI3K/Akt Pathway Modulation
Yuan YIN ; Jing HE ; Yu FANG ; Min WEI ; Wang ZHANG
Biomolecules & Therapeutics 2025;33(3):529-543
Diabetic nephropathy (DN) remains a leading cause of end-stage renal disease (ESRD), driven by chronic inflammation, oxidative stress, and apoptosis. Current therapies targeting glycemic and blood pressure control fail to address the underlying molecular mechanisms of DN. This study investigates the therapeutic potential of andrographolide (AD), a diterpenoid lactone from Andrographis paniculata, in mitigating DN by modulating key molecular pathways. Through integrative network pharmacology, molecular docking, and in vivo/in vitro experiments, 107 overlapping DN-related targets were identified, with STAT3, PI3K, and AKT1 emerging as core nodes. Molecular docking revealed high binding affinities between AD and these targets, supporting its modulatory potential. In vivo, AD significantly improved renal function in streptozotocin-induced DN rats, reducing proteinuria, glomerular hypertrophy, and renal fibrosis. AD also attenuated oxidative stress, decreased pro-inflammatory cytokine levels, and enhanced antioxidant enzyme activities, demonstrating systemic anti-inflammatory and antioxidative effects. In vitro studies further confirmed that AD alleviates podocyte oxidative stress and apoptosis under high glucose conditions by suppressing the RAGE-NF-κB and STAT3/PI3K/Akt pathways. Histological analyses revealed substantial improvements in renal architecture, including reductions in fibrosis and mesangial expansion. These results underscore AD’s multi-target mechanism, directly addressing DN’s core pathological drivers, including inflammation, oxidative stress, and apoptosis. As a natural compound with notable safety and efficacy, AD holds promise as an adjunct or standalone therapeutic agent for DN. This study establishes a robust preclinical foundation for AD, warranting further exploration in clinical trials and its potential application in other diabetic complications.
5.Andrographolide as a Multi-Target Therapeutic Agent in Diabetic Nephropathy: Insights into STAT3/PI3K/Akt Pathway Modulation
Yuan YIN ; Jing HE ; Yu FANG ; Min WEI ; Wang ZHANG
Biomolecules & Therapeutics 2025;33(3):529-543
Diabetic nephropathy (DN) remains a leading cause of end-stage renal disease (ESRD), driven by chronic inflammation, oxidative stress, and apoptosis. Current therapies targeting glycemic and blood pressure control fail to address the underlying molecular mechanisms of DN. This study investigates the therapeutic potential of andrographolide (AD), a diterpenoid lactone from Andrographis paniculata, in mitigating DN by modulating key molecular pathways. Through integrative network pharmacology, molecular docking, and in vivo/in vitro experiments, 107 overlapping DN-related targets were identified, with STAT3, PI3K, and AKT1 emerging as core nodes. Molecular docking revealed high binding affinities between AD and these targets, supporting its modulatory potential. In vivo, AD significantly improved renal function in streptozotocin-induced DN rats, reducing proteinuria, glomerular hypertrophy, and renal fibrosis. AD also attenuated oxidative stress, decreased pro-inflammatory cytokine levels, and enhanced antioxidant enzyme activities, demonstrating systemic anti-inflammatory and antioxidative effects. In vitro studies further confirmed that AD alleviates podocyte oxidative stress and apoptosis under high glucose conditions by suppressing the RAGE-NF-κB and STAT3/PI3K/Akt pathways. Histological analyses revealed substantial improvements in renal architecture, including reductions in fibrosis and mesangial expansion. These results underscore AD’s multi-target mechanism, directly addressing DN’s core pathological drivers, including inflammation, oxidative stress, and apoptosis. As a natural compound with notable safety and efficacy, AD holds promise as an adjunct or standalone therapeutic agent for DN. This study establishes a robust preclinical foundation for AD, warranting further exploration in clinical trials and its potential application in other diabetic complications.
6.Andrographolide as a Multi-Target Therapeutic Agent in Diabetic Nephropathy: Insights into STAT3/PI3K/Akt Pathway Modulation
Yuan YIN ; Jing HE ; Yu FANG ; Min WEI ; Wang ZHANG
Biomolecules & Therapeutics 2025;33(3):529-543
Diabetic nephropathy (DN) remains a leading cause of end-stage renal disease (ESRD), driven by chronic inflammation, oxidative stress, and apoptosis. Current therapies targeting glycemic and blood pressure control fail to address the underlying molecular mechanisms of DN. This study investigates the therapeutic potential of andrographolide (AD), a diterpenoid lactone from Andrographis paniculata, in mitigating DN by modulating key molecular pathways. Through integrative network pharmacology, molecular docking, and in vivo/in vitro experiments, 107 overlapping DN-related targets were identified, with STAT3, PI3K, and AKT1 emerging as core nodes. Molecular docking revealed high binding affinities between AD and these targets, supporting its modulatory potential. In vivo, AD significantly improved renal function in streptozotocin-induced DN rats, reducing proteinuria, glomerular hypertrophy, and renal fibrosis. AD also attenuated oxidative stress, decreased pro-inflammatory cytokine levels, and enhanced antioxidant enzyme activities, demonstrating systemic anti-inflammatory and antioxidative effects. In vitro studies further confirmed that AD alleviates podocyte oxidative stress and apoptosis under high glucose conditions by suppressing the RAGE-NF-κB and STAT3/PI3K/Akt pathways. Histological analyses revealed substantial improvements in renal architecture, including reductions in fibrosis and mesangial expansion. These results underscore AD’s multi-target mechanism, directly addressing DN’s core pathological drivers, including inflammation, oxidative stress, and apoptosis. As a natural compound with notable safety and efficacy, AD holds promise as an adjunct or standalone therapeutic agent for DN. This study establishes a robust preclinical foundation for AD, warranting further exploration in clinical trials and its potential application in other diabetic complications.
7.Analyzing the influencing factors of work-related musculoskeletal disorders in passenger drivers
Xinyang YU ; Yingfei XIANG ; Yonglin LUO ; Meifang XU ; Xiao YIN ; Min YANG ; Huiqing CHEN ; Shijie HU
China Occupational Medicine 2025;52(2):155-159
Objective To investigate the prevalence of work-related musculoskeletal disorders (WMSDs) in passenger drivers and its influencing factors. Methods A total of 951 passenger drivers in Guangdong Province were selected as the research subjects using the judgmental sampling method. A Musculoskeletal Injury Questionnaire was employed to assess the prevalence of WMSDs in the past year. Results The prevalence of WMSDs in passenger drivers was 41.11%. The result of multivariable logistic regression analysis showed that married drivers had a higher risk of WMSDs than single drivers (P<0.05). The lower the frequency of physical exercise, the longer the driving time per week, the longer the continuous driving time, the more restricted the driving working space, the poorer the foot comfort during driving, and the more affected the normal meal, the higher the risk of WMSDs (all P<0.05). The risk of WMSDs in drivers with sleep time ≤ 8.0 h/d was higher than that in drivers with sleep time > 8.0 h/d (P<0.01), and the risk of WMSDs in drivers with the same posture for a long time on the shoulder was higher than that in drivers without this poor working posture (P<0.01). Conclusion WMSDs were prevalent among passenger drivers, which was associated with demographic and adverse ergonomic factors. Intervention on lifestyle and adverse ergonomic factors could further reduce the risk of WMSDs of passenger drivers.
8.Study on Kinetic and Static Tasks With Different Resistance Coefficients in Post-stroke Rehabilitation Training Based on Functional Near-infrared Spectroscopy
Ling-Di FU ; Jia-Xuan DOU ; Ting-Ting YING ; Li-Yong YIN ; Min TANG ; Zhen-Hu LIANG
Progress in Biochemistry and Biophysics 2025;52(7):1890-1903
ObjectiveFunctional near-infrared spectroscopy (fNIRS), a novel non-invasive technique for monitoring cerebral activity, can be integrated with upper limb rehabilitation robots to facilitate the real-time assessment of neurological rehabilitation outcomes. The rehabilitation robot is designed with 3 training modes: passive, active, and resistance. Among these, the resistance mode has been demonstrated to yield superior rehabilitative outcomes for patients with a certain level of muscle strength. The control modes in the resistance mode can be categorized into dynamic and static control. However, the effects of different control modes in the resistance mode on the motor function of patients with upper limb hemiplegia in stroke remain unclear. Furthermore, the effects of force, an important parameter of different control modes, on the activation of brain regions have rarely been reported. This study investigates the effects of dynamic and static resistance modes under varying resistance levels on cerebral functional alterations during motor rehabilitation in post-stroke patients. MethodsA cohort of 20 stroke patients with upper limb dysfunction was enrolled in the study, completing preparatory adaptive training followed by 3 intensity-level tasks across 2 motor paradigms. The bilateral prefrontal cortices (PFC), bilateral primary motor cortices (M1), bilateral primary somatosensory cortices (S1), and bilateral premotor and supplementary motor cortices (PM) were examined in both the resting and motor training states. The lateralization index (LI), phase locking value (PLV), network metrics were employed to examine cortical activation patterns and topological properties of brain connectivity. ResultsThe data indicated that both dynamic and static modes resulted in significantly greater activation of the contralateral M1 area and the ipsilateral PM area when compared to the resting state. The static patterns demonstrated a more pronounced activation in the contralateral M1 in comparison to the dynamic patterns. The results of brain network analysis revealed significant differences between the dynamic and resting states in the contralateral PFC area and contralateral M1 area (F=4.709, P=0.038), as well as in the contralateral PM area and ipsilateral M1 area (F=4.218, P=0.049). Moreover, the findings indicated a positive correlation between the activation of the M1 region and the increase in force in the dynamic mode, which was reversed in the static mode. ConclusionBoth dynamic and static resistance training modes have been demonstrated to activate the corresponding brain functional regions. Dynamic resistance modes elicit greater oxygen changes and connectivity to the region of interest (ROI) than static resistance modes. Furthermore, the effects of increasing force differ between the two modes. In patients who have suffered a stroke, dynamic modes may have a more pronounced effect on the activation of exercise-related functional brain regions.
9.Pharmacological Effect of Phellodendri Chinensis Cortex and Active Components on Gout: A Review
Min LI ; Yunyun QUAN ; Ting WANG ; Li LI ; Jin ZENG ; Junning ZHAO ; Jiuzhou MAO ; Yangfan TANG ; Zhujun YIN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(1):286-298
Gout is a metabolic disease closely associated with hyperuricemia and urate deposition. Because of the complex pathogenesis, high morbidity, multiple complications, and increasingly young patients, gout has received worldwide attention. Currently, western medicine mainly treats gout by lowering the uric acid level and reducing inflammation, which, however, causes serious adverse reactions and has contraindications. Phellodendri Chinensis Cortex (PCC) is the dried bark of Phellodendron chinense, with the effects of clearing heat, drying dampness, purging fire, detoxifying, and treating sores. Studies have shown that PCC and its active components have anti-inflammatory, pain-relieving, uric acid-lowering, and anti-gout activities, with extensive sources and high safety. PCC and its active components could prevent and treat gout through multi-targets and multi-pathways, whereas the systematic review remains to be carried out. Therefore, this paper summarized the pharmacological activities and mechanisms of PCC and its active components in the treatment of gout. The available studies have shown that PCC and its active components exert the anti-gout effect by lowering the uric acid level, reducing inflammation, alleviating oxidative stress, and regulationg intestinal flora, and protecting the kidneys. Particularly, the active components represented by alkaloids contribute obviously to the therapeutic effect of of PCC. Herein, we analyzed the problems and future development of the research on PCC, aiming to provide theoretical support and a scientific basis for the research and development of new drugs against gout.
10.Expression of GDNF and AR in Testicular Peritubular Cells of Surgery-induced Cryptorchidism Mice
Fei WU ; Min CHAO ; Yin ZHANG ; Ye ZHANG ; Jiabin JIANG
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(1):85-92
ObjectiveTo investigate the expression of glial cell line-derived neurotrophic factor (GDNF) and androgen receptor (AR) in testicular peritubular cells (TPCs) of cryptorchidism mouse models and explore the theoretical significance of cryptorchidism-induced spermatogenesis dysfunction. MethodsA total of 30 five-week-old male ICR rats were divided randomly by using random number table method into 6 groups. Cryptorchidism was surgically induced in 3 randomly selected groups and the other 3 groups underwent sham surgery as the control groups. On days 4, 7 and 14 after surgery, we harvested the mice testes of the 3 groups and their corresponding control groups, then measured the testicular volumes, analyzed the testicular histopathology and detected the mRNA and protein expression levels of AR and GDNF in TPCs by immunofluorescence, real-time PCR and Western blot. ResultsIn normal control groups, on days 4, 7 and 14 after surgery, the testicular volumes were (125.58±19.22) mm3,(123.45±20.12) mm3, (140.09±13.62) mm3 , respectively. Clear layers of spermatogenic cells were well arranged and abundant sperm cells were found. Peritubular cells were morphologically homogeneous, with slim-spindle appearance and normal cell thickness. The mRNA expression levels of AR were 1.00±0.05, 1.06±0.07 and 1.19±0.13; GDNF mRNA 1.00±0.04, 1.09±0.05, and 1.10±0.07. The protein expression levels of AR were 1.01±0.01, 0.79±0.02 and 1.01±0.04; GDNF protein (18.68±0.43) pg/mL, (14.39±0.36) pg/mL and (16.88±0.37) pg/mL. In cryptorchidism groups, on days 4, 7 and 14 after surgery, the testicular volumes were (115.64±3.91) mm3, (69.51±14.97) mm3 and (44.86±5.56) mm3, respectively. Spermatogenic cells were disorganized, seminiferous tubules were disrupted, peritubular cells shrank, bent and fractured. The mRNA expression levels of AR were 0.76±0.06, 0.53±0.04, and 0.29±0.02; GDNF mRNA 0.72±0.05, 0.42±0.02 and 0.30±0.03. The protein expression levels of AR were 0.54±0.02, 0.98±0.04 and 0.31±0.01; GDNF protein (8.50±0.34) pg/mL, (17.44±0.32) pg/mL and (6.83±0.34) pg/mL. Statistically significant differences (P < 0.05) were found in 7-day and 14-day testicular volumes between control and cryptorchidism groups but not in the 4-day testicular volume (P > 0.05). Testicular volumes, AR and GDNF mRNA and protein expression in control groups had no statistically significant difference (P > 0.05), while those in cryptorchidism groups showed a trend of gradual decline in the amount and the differences between groups were statistically significant (P < 0.05). ConclusionsIn surgery-induced cryptorchidism mice, after the induction, the expression of AR and GDNF in TPCs showed a gradual decrease over time. AR and GDNF play a major role in mediating the TPCs damage in cryptorchidism. This study provides a theoretical basis for mechanism researches of cryptorchidism-induced spermatogenesis dysfunction.

Result Analysis
Print
Save
E-mail