1.Exploring the mechanism of lncRNA-BC200 in regulating neuronal injury repair based on controlling BACE1 ubiquitination.
Lijun LIU ; Jie DU ; Huan LIU ; Yuan WANG ; Jing ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):125-133
Objective To explore the mechanism of lncRNA-BC200 (BC200) targeting the ubiquitination of Beta-site APP cleaving enzyme 1 (BACE1) and regulating the repair of nerve cell injury. Methods Mouse hippocampal neuron cell line HT22 was divided into four groups: control group, oxygen-glucose deprivation/reoxygenation(OGD/R) group, OGD/R+si-NC group and OGD/R+si-BC200 group. In order to further explore the relationship between BC200 and BACE1, HT22 cells were divided into four groups: OGD/R group, OGD/R+si-BC200 group, OGD/R+si-BC200+NC group and OGD/R+si-BC200+ BACE1 group. Twenty male C57BL/6J mice were randomly assigned to the following four groups: control group, middle cerebral artery occlusion (MCAO) group, MCAO+si-BC200 group and MCAO+si-BC200+BACE1 group. The mRNA expression levels of BC200 and BACE1 in cells were measured by real-time quantitative reverse transcription polymerase chain reaction. The expressions of c-caspase-3, B-cell lymphoma 2 (Bcl2), Bcl2 associated X protein(BAX) and BACE1 were detected by western blot, and the apoptotic cells were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) test. Results Compared with the control group, the activity of HT22 cells in OGD/R group decreased significantly, and the percentage of apoptotic cells increased significantly. Compared with OGD/R+si-NC group, the activity of HT22 cells in OGD/R+si-BC200 group increased significantly, and the percentage of apoptotic cells decreased significantly. Compared with the control group, the expression of BACE1 protein in HT22 cells in OGD/R group was significantly enhanced. Compared with OGD/R+si-NC group, the expression of BACE1 protein in HT22 cells in OGD/R+si-BC200 group decreased significantly. It was observed that after OGD/R treatment, the ubiquitination level of BACE1 decreased significantly and the expression of BACE1 protein increased significantly. After transfection with si-BC200, the ubiquitination level of BACE1 protein increased significantly, while the expression of BACE1 protein decreased significantly. Compared with OGD/R+si-BC200+NC group, the percentage of apoptotic cells, the expression of c-caspase-3 and Bax protein in HT22 cells in OGD/R+si-BC200+BACE1 group increased significantly, and the expression of Bcl2 protein decreased significantly. Compared with the control group, the number of cerebral infarction areas and TUNEL positive cells in MCAO group increased significantly, and the survival number of neurons decreased significantly. Compared with the MCAO group, the number of cerebral infarction areas and TUNEL positive cells in MCAO+si-BC200 group decreased significantly, and the survival number of neurons increased significantly, while the addition of BACE1 reversed the improvement of si-BC200 transfection. Conclusion The combination of BC200 and BACE1 inhibit the ubiquitination of BACE1, and participate in mediating the expression enhancement of BACE1 induced by OGD/R. Specific blocking of BC200/BACE1 axis may be a potential therapeutic target to protect neurons from apoptosis induced by cerebral ischemia/reperfusion.
Animals
;
Amyloid Precursor Protein Secretases/genetics*
;
RNA, Long Noncoding/physiology*
;
Aspartic Acid Endopeptidases/genetics*
;
Male
;
Neurons/pathology*
;
Mice
;
Mice, Inbred C57BL
;
Apoptosis/genetics*
;
Ubiquitination
;
Cell Line
;
Hippocampus/metabolism*
;
bcl-2-Associated X Protein/genetics*
;
Caspase 3/genetics*
;
Infarction, Middle Cerebral Artery/metabolism*
2.Efficacy of volume-guaranteed high-frequency oscillatory ventilation in preterm infants with respiratory distress syndrome and its impact on cerebral blood flow in the middle cerebral artery.
Yue-Yi WANG ; Xue-Xu WEI ; Hai-Wei YIN ; Hong-Bin ZHU
Chinese Journal of Contemporary Pediatrics 2025;27(3):286-292
OBJECTIVES:
To investigate the efficacy of volume-guaranteed high-frequency oscillatory ventilation (HFOV-VG) in preterm infants with respiratory distress syndrome (RDS) and its impact on blood flow in the middle cerebral artery (MCA).
METHODS:
A prospective study was conducted on 120 preterm infants with RDS who were admitted to the Department of Neonatology at Qinhuangdao Maternal and Child Health Hospital from March 2020 to December 2023. According to the mode of ventilation, the infants were divided into two groups: a conventional mechanical ventilation (CMV) group (60 infants) and an HFOV-VG group (60 infants). The two groups were compared in terms of baseline data, MCA hemodynamic parameters, complications, and outcomes.
RESULTS:
Compared with the CMV group, the HFOV-VG group had significantly shorter durations of mechanical ventilation and hospital stay and a significantly higher overall response rate (P<0.05). The HFOV-VG group demonstrated significantly better peak systolic velocity, end-diastolic velocity, and mean flow velocity (P<0.05). The HFOV-VG group also exhibited significantly lower 28-day mortality rates and lower incidence rates of bronchopulmonary dysplasia and intraventricular hemorrhage than the CMV group (P<0.05).
CONCLUSIONS
HFOV-VG can effectively improve cerebral blood perfusion, reduce cerebrovascular resistance, shorten the durations of mechanical ventilation and hospital stay, and enhance overall treatment efficacy. It has significant advantages in reducing the risk of 28-day mortality, bronchopulmonary dysplasia, and intraventricular hemorrhage in preterm infants with RDS.
Humans
;
High-Frequency Ventilation/adverse effects*
;
Infant, Newborn
;
Respiratory Distress Syndrome, Newborn/physiopathology*
;
Female
;
Middle Cerebral Artery/physiology*
;
Male
;
Prospective Studies
;
Cerebrovascular Circulation
;
Infant, Premature
3.Salvianolic Acid B and Ginsenoside Rg1 Combination Attenuates Cerebral Edema Accompanying Glymphatic Modulation.
Lingxiao ZHANG ; Yanan SHAO ; Zhao FANG ; Siqi CHEN ; Yixuan WANG ; Han SHA ; Yuhan ZHANG ; Linlin WANG ; Yi JIN ; Hao CHEN ; Baohong JIANG
Neuroscience Bulletin 2025;41(11):1909-1923
Cerebral edema is characterized by fluid accumulation, and the glymphatic system (GS) plays a pivotal role in regulating fluid transport. Using the Tenecteplase system, magnesium salt of salvianolic acid B/ginsenoside Rg1 (SalB/Rg1) was injected intravenously into mice 4.5 h after middle cerebral artery occlusion and once every 24 h for the following 72 h. GS function was assessed by Evans blue imaging, near-infrared fluorescence region II (NIR-II) imaging, and magnetic resonance imaging (MRI). SalB/Rg1 had significant effects on reducing the infarct volume and hemorrhagic transformation score, improving neurobehavioral function, and protecting tissue structure, especially inhibiting cerebral edema. Meanwhile, the influx/efflux drainage of GS was enhanced by SalB/Rg1 according to NIR-II imaging and MRI. SalB/Rg1 inhibited matrix metalloproteinase-9 (MMP-9) activity, reduced cleaved β-dystroglycan (β-DG), and stabilized aquaporin-4 (AQP4) polarity, which was verified by colocalization with CD31. Our findings indicated that SalB/Rg1 treatment enhances GS function and attenuates cerebral edema, accompanying the regulation of the MMP9/β-DG/AQP4 pathway.
Animals
;
Ginsenosides/administration & dosage*
;
Brain Edema/etiology*
;
Male
;
Benzofurans/administration & dosage*
;
Glymphatic System/diagnostic imaging*
;
Mice
;
Infarction, Middle Cerebral Artery/drug therapy*
;
Aquaporin 4/metabolism*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Matrix Metalloproteinase 9/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Depsides
4.Forsythiaside B inhibits cerebral ischemia/reperfusion-induced oxidative stress injury in mice via the AMPK/DAF-16/FOXO3 pathway.
Xing CHEN ; Kai Fang WANG ; De Hai CHU ; Yu ZHU ; Wen Bing ZHANG ; Hui Ping CAO ; Wen Yu XIE ; Chuan Hao LU ; Xia LI
Journal of Southern Medical University 2023;43(2):199-205
OBJECTIVE:
To study the protective effect of forsythiaside B (FB) against cerebral oxidative stress injury induced by cerebral ischemia/reperfusion (I/R) in mice and explore the underlying mechanism.
METHODS:
Ninety C57BL/6 mice were randomized into sham-operated group, middle cerebral artery occlusion (MCAO) model group, and low-, medium and highdose (10, 20, and 40 mg/kg, respectively) FB groups. The expression levels of MDA, ROS, PCO, 8-OHdG, SOD, GSTα4, CAT and GPx in the brain tissue of the mice were detected using commercial kits, and those of AMPK, P-AMPK, DAF-16, FOXO3 and P-FOXO3 were detected with Western blotting. Compound C (CC), an AMPK inhibitor, was used to verify the role of the AMPK pathway in mediating the therapeutic effect of FB. In another 36 C57BL/6 mice randomized into 4 sham-operated group, MCAO model group, FB (40 mg/kg) treatment group, FB+CC (10 mg/kg) treatment group, TTC staining was used to examine the volume of cerebral infarcts, and the levels of ROS and SOD in the brain were detected; the changes in the protein expressions of AMPK, P-AMPK, DAF-16, FOXO3 and P-FOXO3 in the brain tissue were detected using Western blotting.
RESULTS:
In mice with cerebral IR injury, treatment with FB significantly reduced the levels of ROS, MDA, PCO and 8-OHdG, increased the activities of antioxidant enzymes SOD, GSTα4, CAT and GPx, and enhanced phosphorylation of AMPK and FOXO3 and DAF-16 protein expression in the brain tissue (P < 0.01). Compared with FB treatment alone, the combined treatment with FB and CC significantly reduced phosphorylation of AMPK and FOXO3, lowered expression of DAF-16 and SOD activity, and increased cerebral infarction volume and ROS level in the brain tissue of the mice (P < 0.01).
CONCLUSION
FB inhibits oxidative stress injury caused by cerebral I/R in mice possibly by enhancing AMPK phosphorylation, promoting the downstream DAF-16 protein expression and FOXO3 phosphorylation, increasing the expression of antioxidant enzymes, and reducing ROS level in the brain tissue.
Mice
;
Animals
;
AMP-Activated Protein Kinases/metabolism*
;
Antioxidants/metabolism*
;
Reactive Oxygen Species
;
Mice, Inbred C57BL
;
Brain Ischemia
;
Oxidative Stress
;
Infarction, Middle Cerebral Artery
;
Reperfusion Injury
;
Reperfusion
;
Superoxide Dismutase/metabolism*
5.Soybean isoflavones alleviate cerebral ischemia/reperfusion injury in rats by inhibiting ferroptosis and inflammatory cascade reaction.
Shai LI ; Li LI ; Si Min MIN ; Sai Sai LIU ; Zhi Wen QIN ; Zhi Shang XIONG ; Jian Guo XU ; Bo Wen WANG ; Du Shan DING ; Shi Di ZHAO
Journal of Southern Medical University 2023;43(2):323-330
OBJECTIVE:
To explore the mechanism that mediates the effect of soybean isoflavones (SI) against cerebral ischemia/reperfusion (I/R) injury in light of the regulation of regional cerebral blood flow (rCBF), ferroptosis, inflammatory response and blood-brain barrier (BBB) permeability.
METHODS:
A total of 120 male SD rats were equally randomized into sham-operated group (Sham group), cerebral I/R injury group and SI pretreatment group (SI group). Focal cerebral I/R injury was induced in the latter two groups using a modified monofilament occlusion technique, and the intraoperative changes of real-time cerebral cortex blood flow were monitored using a laser Doppler flowmeter (LDF). The postoperative changes of cerebral pathological morphology and the ultrastructure of the neurons and the BBB were observed with optical and transmission electron microscopy. The neurological deficits of the rats was assessed, and the severities of cerebral infarction, brain edema and BBB disruption were quantified. The contents of Fe2+, GSH, MDA and MPO in the ischemic penumbra were determined with spectrophotometric tests. Serum levels of TNF-α and IL-1βwere analyzed using ELISA, and the expressions of GPX4, MMP-9 and occludin around the lesion were detected with Western blotting and immunohistochemistry.
RESULTS:
The rCBF was sharply reduced in the rats in I/R group and SI group after successful insertion of the monofilament. Compared with those in Sham group, the rats in I/R group showed significantly increased neurological deficit scores, cerebral infarction volume, brain water content and Evans blue permeability (P < 0.01), decreased Fe2+ level, increased MDA level, decreased GSH content and GPX4 expression (P < 0.01), increased MPO content and serum levels of TNF-α and IL-1β (P < 0.01), increased MMP-9 expression and lowered occludin expression (P < 0.01). All these changes were significantly ameliorated in rats pretreated with IS prior to I/R injury (P < 0.05 or 0.01).
CONCLUSION
SI preconditioning reduces cerebral I/R injury in rats possibly by improving rCBF, inhibiting ferroptosis and inflammatory response and protecting the BBB.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Matrix Metalloproteinase 9/metabolism*
;
Soybeans/metabolism*
;
Occludin/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ferroptosis
;
Blood-Brain Barrier/ultrastructure*
;
Brain Ischemia/metabolism*
;
Cerebral Infarction
;
Reperfusion Injury/metabolism*
;
Isoflavones/therapeutic use*
;
Infarction, Middle Cerebral Artery
6.Effects of electro-scalp acupuncture on inflammatory response and microglial polarization in the ischemic cortex of rats with ischemic stroke.
Xiao-Yun PENG ; Bo YUAN ; Tian TIAN ; Wen-Jun LUO ; Ling-Gui ZHU ; Yan-Ju ZHANG ; Ying LI ; Xiao-Zheng DU ; Jin-Hai WANG
Chinese Acupuncture & Moxibustion 2023;43(9):1050-1055
OBJECTIVE:
To observe the effects of electro-scalp acupuncture (ESA) on the expression of microglial markers CD206 and CD32, as well as interleukin (IL)-6, IL-1β, and IL-10 in the ischemic cortex of rats with ischemic stroke, and to explore the mechanisms of ESA on alleviating inflammatory damage of ischemic stroke.
METHODS:
Sixty 7-week-old male SD rats were randomly selected, with 15 rats assigned to a sham surgery group. The remaining rats were treated with suture method to establish rat model of middle cerebral artery occlusion (MCAO). The rats with successful model were randomly divided into a model group, a VitD3 group, and an ESA group, with 15 rats in each group. In the ESA group, ESA was performed bilaterally at the "top-temporal anterior oblique line" with disperse-dense wave, a frequency of 2 Hz/100 Hz, and an intensity of 1 mA. Each session lasted for 30 min, once daily, for a total of 7 days. The VitD3 group were treated with intragastric administration of 1,25-dihydroxyvitamin D3 (1,25-VitD3) solution (3 ng/100 g), once daily for 7 days. The neurological deficit scores and neurobehavioral scores were assessed before and after the intervention. After the intervention, the brain infarct volume was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining. Immunofluorescence double staining was performed to detect the protein expression of CD32 and CD206 in the ischemic cortex. Western blot analysis was conducted to measure the protein expression of IL-6, IL-1β, and IL-10 in the ischemic cortex.
RESULTS:
Compared with the sham surgery group, the model group showed increased neurological deficit scores and neurobehavioral scores (P<0.01), increased brain infarct volume (P<0.01), increased protein expression of CD32, IL-6, and IL-1β in the ischemic cortex (P<0.01), and decreased protein expression of CD206 and IL-10 in the ischemic cortex (P<0.01). Compared with the model group, both the ESA group and the VitD3 group showed decreased neurological deficit scores and neurobehavioral scores (P<0.01), reduced brain infarct volume (P<0.01), decreased protein expression of CD32, IL-6, and IL-1β in the ischemic cortex (P<0.01), and increased protein expression of CD206 and IL-10 in the ischemic cortex (P<0.01). Compared with the VitD3 group, the ESA group had lower neurological deficit score (P<0.05), larger brain infarct volume (P< 0.05), and lower protein expression of CD32, CD206, IL-1β, and IL-10 in the ischemic cortex (P<0.01, P<0.05).
CONCLUSION
ESA could improve neurological function in MCAO rats, and its mechanism may be related to promoting microglial M1-to-M2 polarization and alleviating inflammatory damage.
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Ischemic Stroke
;
Interleukin-10
;
Interleukin-6/genetics*
;
Microglia
;
Scalp
;
Acupuncture Therapy
;
Vitamins
;
Infarction, Middle Cerebral Artery
7.Effect of arteriosclerotic intracranial arterial vessel wall enhancement on downstream collateral flow.
Liqun YAN ; Jin YAN ; Zhenchang WANG ; Guoshi WANG ; Zhenzhong LI ; Yaping HOU ; Boyuan HUANG ; Qianbo DONG ; Xiaodan MU ; Wei CAO ; Pengfei ZHAO
Chinese Medical Journal 2023;136(18):2221-2228
BACKGROUND:
The effect of arteriosclerotic intracranial arterial vessel wall enhancement (IAVWE) on downstream collateral flow found in vessel wall imaging (VWI) is not clear. Regardless of the mechanism underlying IAVWE on VWI, damage to the patient's nervous system caused by IAVWE is likely achieved by affecting downstream cerebral blood flow. The present study aimed to investigate the effect of arteriosclerotic IAVWE on downstream collateral flow.
METHODS:
The present study recruited 63 consecutive patients at the Second Hospital of Hebei Medical University from January 2021 to November 2021 with underlying atherosclerotic diseases and unilateral middle cerebral artery (MCA) M1-segment stenosis who underwent an magnetic resonance scan within 3 days of symptom onset. The patients were divided into 4 groups according to IAVWE and the stenosis ratio (Group 1, n = 17; Group 2, n = 19; Group 3, n = 13; Group 4, n = 14), and downstream collateral flow was analyzed using three-dimensional pseudocontinuous arterial spin labeling (3D-pCASL) and RAPID software. The National Institutes of Health Stroke Scale (NIHSS) scores of the patients were also recorded. Two-factor multivariate analysis of variance using Pillai's trace was used as the main statistical method.
RESULTS:
No statistically significant difference was found in baseline demographic characteristics among the groups. IAVWE, but not the stenosis ratio, had a statistically significant significance on the late-arriving retrograde flow proportion (LARFP), hypoperfusion intensity ratio (HIR), and NIHSS scores ( F = 20.941, P <0.001, Pillai's trace statistic = 0.567). The between-subject effects test showed that IAVWE had a significant effect on the three dependent variables: LARFP ( R2 = 0.088, F = 10.899, P = 0.002), HIR ( R2 = 0.234, F = 29.354, P <0.001), and NIHSS ( R2 = 114.339, F = 33.338, P <0.001).
CONCLUSIONS:
Arteriosclerotic IAVWE significantly reduced downstream collateral flow and affected relevant neurological deficits. It was an independent factor affecting downstream collateral flow and NIHSS scores, which should be a focus of future studies.
TRIAL REGISTRATION
ChiCTR.org.cn, ChiCTR2100053661.
Humans
;
Constriction, Pathologic/pathology*
;
Magnetic Resonance Imaging/methods*
;
Middle Cerebral Artery/pathology*
;
Tomography, X-Ray Computed
8.Chrysin alleviates cerebral ischemia-reperfusion injury by inhibiting ferroptosis in rats.
Jin-Feng SHANG ; Jia-Kang JIAO ; Qian-Nan LI ; Ying-Hui LU ; Jing-Yi WANG ; Ming-Xue YAN ; Yin-Lian WEN ; Gui-Jin-Feng HUANG ; Xiao-Lu ZHANG ; Xin LIU
China Journal of Chinese Materia Medica 2023;48(6):1597-1605
The purpose of this study is to investigate whether chrysin reduces cerebral ischemia-reperfusion injury(CIRI) by inhi-biting ferroptosis in rats. Male SD rats were randomly divided into a sham group, a model group, high-, medium-, and low-dose chrysin groups(200, 100, and 50 mg·kg~(-1)), and a positive drug group(Ginaton, 21.6 mg·kg~(-1)). The CIRI model was induced in rats by transient middle cerebral artery occlusion(tMCAO). The indexes were evaluated and the samples were taken 24 h after the operation. The neurological deficit score was used to detect neurological function. The 2,3,5-triphenyl tetrazolium chloride(TTC) staining was used to detect the cerebral infarction area. Hematoxylin-eosin(HE) staining and Nissl staining were used to observe the morphological structure of brain tissues. Prussian blue staining was used to observe the iron accumulation in the brain. Total iron, lipid pero-xide, and malondialdehyde in serum and brain tissues were detected by biochemical reagents. Real-time quantitative polymerase chain reaction(RT-qPCR), immunohistochemistry, and Western blot were used to detect mRNA and protein expression of solute carrier fa-mily 7 member 11(SLC7A11), transferrin receptor 1(TFR1), glutathione peroxidase 4(GPX4), acyl-CoA synthetase long chain family member 4(ACSL4), and prostaglandin-endoperoxide synthase 2(PTGS2) in brain tissues. Compared with the model group, the groups with drug intervention showed restored neurological function, decreased cerebral infarction rate, and alleviated pathological changes. The low-dose chrysin group was selected as the optimal dosing group. Compared with the model group, the chrysin groups showed reduced content of total iron, lipid peroxide, and malondialdehyde in brain tissues and serum, increased mRNA and protein expression levels of SLC7A11 and GPX4, and decreased mRNA and protein expression levels of TFR1, PTGS2, and ACSL4. Chrysin may regulate iron metabolism via regulating the related targets of ferroptosis and inhibit neuronal ferroptosis induced by CIRI.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Ferroptosis
;
Signal Transduction
;
Brain Ischemia/metabolism*
;
Cyclooxygenase 2/metabolism*
;
RNA, Messenger
;
Cerebral Infarction
;
Reperfusion Injury/metabolism*
;
Malondialdehyde
;
Infarction, Middle Cerebral Artery
9.Effect of Xiaoxuming Decoction on synaptic plasticity following acute cerebral ischemia-reperfusion in rats.
Xue-Qin FU ; Rui LAN ; Yong ZHANG ; Man-Man WANG ; Xu-Huan ZOU ; Wei-Wei WANG
China Journal of Chinese Materia Medica 2023;48(14):3882-3889
This study aims to explore the effect of Xiaoxuming Decoction on synaptic plasticity in rats with acute cerebral ischemia-reperfusion. A rat model of cerebral ischemia-reperfusion injury was established by middle cerebral artery occlusion(MCAO). Rats were randomly assigned into a sham group, a MCAO group, and a Xiaoxuming Decoction(60 g·kg~(-1)·d~(-1)) group. The Longa score was rated to assess the neurological function of rats with cerebral ischemia for 1.5 h and reperfusion for 24 h. The 2,3,5-triphenyltetrazolium chloride(TTC) staining and hematoxylin-eosin(HE) staining were employed to observe the cerebral infarction and the pathological changes of brain tissue after cerebral ischemia, respectively. Transmission electron microscopy was employed to detect the structural changes of neurons and synapses in the ischemic penumbra, and immunofluorescence, Western blot to determine the expression of synaptophysin(SYN), neuronal nuclei(NEUN), and postsynaptic density 95(PSD95) in the ischemic penumbra. The experimental results showed that the modeling increased the Longa score and led to cerebral infarction after 24 h of ischemia-reperfusion. Compared with the model group, Xiaoxuming Decoction intervention significantly decreased the Longa score and reduced the formation of cerebral infarction area. The modeling led to the shrinking and vacuolar changes of nuclei in the brain tissue, disordered cell arrangement, and severe cortical ischemia-reperfusion injury, while the pathological damage in the Xiaoxuming Decoction group was mild. The modeling blurred the synaptic boundaries and broadened the synaptic gap, while such changes were recovered in the Xiaoxuming Decoction group. The modeling decreased the fluorescence intensity of NEUN and SYN, while the intensity in Xiaoxuming Decoction group was significantly higher than that in the model group. The expression of SYN and PSD95 in the ischemic penumbra was down-regulated in the model group, while such down-regulation can be alleviated by Xiaoxuming Decoction. In summary, Xiaoxuming Decoction may improve the synaptic plasticity of ischemic penumbra during acute cerebral ischemia-reperfusion by up-regulating the expression of SYN and PSD95.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Brain Ischemia/drug therapy*
;
Reperfusion Injury/metabolism*
;
Infarction, Middle Cerebral Artery
;
Neuronal Plasticity
;
Reperfusion
10.Endogenous FGF21 attenuates blood-brain barrier disruption in penumbra after delayed recanalization in MCAO rats through FGFR1/PI3K/Akt pathway.
Wen ZHENG ; Wenjun LI ; Yini ZENG ; Hui YUAN ; Heng YANG ; Ru CHEN ; Anding ZHU ; Jinze WU ; Zhi SONG ; Wenguang YAN
Journal of Central South University(Medical Sciences) 2023;48(5):648-662
OBJECTIVES:
Restoration of blood circulation within "time window" is the principal treating goal for treating acute ischemic stroke. Previous studies revealed that delayed recanalization might cause serious ischemia/reperfusion injury. However, plenty of evidences showed delayed recanalization improved neurological outcomes in acute ischemic stroke. This study aims to explore the role of delayed recanalization on blood-brain barrier (BBB) in the penumbra (surrounding ischemic core) and neurological outcomes after middle cerebral artery occlusion (MCAO).
METHODS:
Recanalization was performed on the 3rd day after MCAO. BBB disruption was tested by Western blotting, Evans blue dye, and immunofluorescence staining. Infarct volume and neurological outcomes were evaluated on the 7th day after MCAO. The expression of fibroblast growth factor 21 (FGF21), fibroblast growth factor receptor 1 (FGFR1), phosphatidylinositol-3-kinase (PI3K), and serine/threonine kinase (Akt) in the penumbra were observed by immunofluorescence staining and/or Western blotting.
RESULTS:
The extraversion of Evans blue, IgG, and albumin increased surrounding ischemic core after MCAO, but significantly decreased after recanalization. The expression of Claudin-5, Occludin, and zona occludens 1 (ZO-1) decreased surrounding ischemic core after MCAO, but significantly increased after recanalization. Infarct volume reduced and neurological outcomes improved following recanalization (on the 7th day after MCAO). The expressions of Claudin-5, Occludin, and ZO-1 decreased surrounding ischemic core following MCAO, which were up-regulated corresponding to the increases of FGF21, p-FGFR1, PI3K, and p-Akt after recanalization. Intra-cerebroventricular injection of FGFR1 inhibitor SU5402 down-regulated the expression of PI3K, p-Akt, Occludin, Claudin-5, and ZO-1 in the penumbra, which weakened the beneficial effects of recanalization on neurological outcomes after MCAO.
CONCLUSIONS
Delayed recanalization on the 3rd day after MCAO increases endogenous FGF21 in the penumbra and activates FGFR1/PI3K/Akt pathway, which attenuates BBB disruption in the penumbra and improves neurobehavior in MCAO rats.
Animals
;
Rats
;
Blood-Brain Barrier/metabolism*
;
Brain Ischemia
;
Claudin-5/metabolism*
;
Infarction, Middle Cerebral Artery/metabolism*
;
Ischemic Stroke/metabolism*
;
Occludin/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats, Sprague-Dawley
;
Receptor, Fibroblast Growth Factor, Type 1/metabolism*
;
Reperfusion Injury/metabolism*

Result Analysis
Print
Save
E-mail