1.Functional Mechanisms of Spinal Cord Fragile X Mental Retardation Protein and β-Catenin Involved in Neuropathic Pain.
Long ZHANG ; Jin-Song ZHAO ; Li ZHOU ; Lei CHEN ; Zhi-Ying FENG
Acta Academiae Medicinae Sinicae 2025;47(4):509-518
Objective To explore the functional mechanism of spinal cord fragile X mental retardation protein(FMRP)involved in neuropathic pain(NP)by using the sciatic nerve model of chronic compression injury(CCI).Methods First,to investigate the changes of spinal cord FMRP and β-catenin following the development of NP,this study compared the 50%mechanical withdrawal threshold(MWT)and thermal withdrawal latency(TWL)in CCI rats,as well as changes of FMRP and β-catenin in the spinal dorsal horn post-surgery,through random grouping.Immunofluorescence staining was performed on spinal cord tissue sections from CCI rats.Second,to further validate the alterations in pain behavior when the FMRP function was lost,we measured the 50%MWT,TWL,and FMRP and β-catenin in the spinal dorsal horn after FMRP knockdown in CCI rats.Finally,we measured the 50%MWT,TWL,and FMRP and β-catenin in the case of FMRP hyperfunction for validation.Results Compared with the baseline CCI group and the naive and sham groups after modeling,the CCI group after modeling showed decreases in 50%MWT and TWL(all P<0.001).After modeling,compared with the naive group and the sham group,the CCI group presented up-regulated expression of FMRP(P=0.027,P=0.022)and β-catenin(P<0.001,P=0.001)in the spinal dorsal horn.No co-localization of FMRP with astrocytes and microglia was observed in the spinal cord,while the co-localization with neurons was observed.Compared with the baseline,the CCI+FMRP knockdown group showed decreases in 50%MWT(P=0.015)and TWL(P=0.001)after modeling.After intrathecal injection of small interfering RNA(siRNA),the 50%MWT(P=0.020)and TWL(P=0.009)of the CCI+FMRP knockdown group were increased.Moreover,compared with the CCI group and the CCI+solvent group,the CCI+FMRP knockdown group showed increases in 50%MWT(both P<0.001)and TWL(P=0.005,P=0.006).After intrathecal injection of siRNA,the expression levels of FMRP(P=0.012,P=0.007)and β-catenin(both P<0.001)in the spinal dorsal horn of the CCI+FMRP knockdown group were lower than those of the CCI group and the CCI+solvent group.Compared with the baseline FMRP overexpression group and the naive and negative control groups after adeno-associated virus(AAV)injection,the FMRP overexpression group after AAV injection showed decreases in 50%MWT and TWL(all P<0.001).After AAV injection,compared with the naive group and the negative control group,the FMRP overexpression group demonstrated up-regulated expression of FMRP(both P<0.001)and β-catenin(P=0.006,P=0.008)in the spinal cord.Conclusions This study confirms that spinal cord FMRP and β-catenin are involved in NP induced by CCI.Spinal cord FMRP may be one of the potential therapeutic targets for NP.
Animals
;
beta Catenin/metabolism*
;
Neuralgia/metabolism*
;
Fragile X Mental Retardation Protein/physiology*
;
Spinal Cord/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Male
2.Börjeson -Forssman -Lehmann syndrome: A case report.
Langui PAN ; Fei YIN ; Shimeng CHEN ; Juan XIONG ; Fang HE ; Jing PENG
Journal of Central South University(Medical Sciences) 2023;48(2):294-301
Börjeson-Forssman-Lehmann syndrome (BFLS) is a rare X-linked intellectual disability. The main features of the patients include intellectual disability/global developmental delay, characteristic face, anomalies of fingers and toes, hypogonadism, linear skin hyperpigmentation, and tooth abnormalities in female patients, and obesity in male patients. A case of BFLS caused by a novel mutation of PHF6 gene who was treated in the Department of Pediatrics, Xiangya Hospital, Central South University was reported. The 11 months old girl presented the following symptons: Global developmental delay, characteristic face, sparse hair, ocular hypertelorism, flat nasal bridge, hairy anterior to the tragus, thin upper lip, dental anomalies, ankyloglossia, simian line, tapering fingers, camptodactylia, and linear skin hyperpigmentation. The gene results of the second-generation sequencing technology showed that there was a novel heterozygous mutation site c.346C>T (p.Arg116*) of the PHF6 (NM032458.3), variation rating as pathogenic variation. During the follow-up, the patient developed astigmatism, strabismus, awake bruxism, and stereotyped behavior, and the linear skin hyperpigmentation became gradually more evident. The disease is lack of effective therapy so far.
Humans
;
Male
;
Female
;
Child
;
Infant
;
Intellectual Disability/genetics*
;
Mental Retardation, X-Linked/pathology*
;
Obesity/complications*
;
Hypogonadism/pathology*
3.Analysis of clinical features and ATRX gene variants in a Chinese pedigree affected with X-linked alpha thalassemia mental retardation (ATR-X) syndrome.
Rui DONG ; Yali YANG ; Hui GUO ; Min GAO ; Yuqiang LYU ; Yue LI ; Xiaomeng YANG ; Yi LIU
Chinese Journal of Medical Genetics 2023;40(12):1508-1511
OBJECTIVE:
To explore the clinical characteristics and genetic basis of two brothers featuring X-linked alpha thalassemia mental retardation (ATR-X) syndrome.
METHODS:
An infant who had presented at the Qilu Children's Hospital in 2020 for unstable upright head and inability to roll over and his family were selected as the study subjects. The clinical features of the child and one of his brothers were summarized, and their genomic DNA was subjected to targeted capture and next generation sequencing (NGS).
RESULTS:
The brothers had presented with mental retardation and facial dysmorphisms. NGS revealed that they had both harbored a hemizygous c.5275C>A variant of the ATRX gene located on the X chromosome, which was inherited from their mother.
CONCLUSION
The siblings were diagnosed with ATR-X syndrome. The discovery of the c.5275C>A variant has enriched the mutational spectrum of the ATRX gene.
Humans
;
Infant
;
Male
;
alpha-Thalassemia/diagnosis*
;
Ataxia Telangiectasia Mutated Proteins/genetics*
;
East Asian People
;
Intellectual Disability/genetics*
;
Mental Retardation, X-Linked/diagnosis*
;
Pedigree
;
X-linked Nuclear Protein/genetics*
4.Clinical characterization and genetic testing for a patient with creatine deficiency syndrome 1.
Shu XYU ; Chen XU ; Yuan LYU ; Chuang LI ; Caixia LIU
Chinese Journal of Medical Genetics 2022;39(2):213-215
OBJECTIVE:
To explore the genetic basis for a child affected with cerebral creatine deficiency syndrome 1 (CCDS1).
METHODS:
High-throughput sequencing was carried out to screen pathogenic variant associated with the clinical phenotype of the proband. The candidate variant was verified by Sanger sequencing.
RESULTS:
High-throughput sequencing revealed that the proband has carried heterozygous c.327delG variant of the SLC6A8 gene, which was verified by Sanger sequencing.Neither parent was found to carry the same variant.
CONCLUSION
The de novo heterozygous c.327delG variant of the SLC6A8 gene probably underlay the CCDS1 in this child.
Brain Diseases, Metabolic, Inborn/genetics*
;
Creatine
;
Genetic Testing
;
Heterozygote
;
Humans
;
Mental Retardation, X-Linked
;
Mutation
5.Analysis of IQSEC2 gene variant in a child with X-linked mental retardation.
Jianbo ZHAO ; Xinying YANG ; Jiuwei LI ; Hongmei WANG ; Weihua ZHANG ; Fang FANG
Chinese Journal of Medical Genetics 2022;39(4):421-424
OBJECTIVE:
To analyze the clinical phenotype and genetic variants of a child with X-linked mental retardation caused by IQSEC2 gene mutation, and provide reference for the diagnosis of the disease.
METHODS:
The child was subjected to next generation sequencing (NGS), and the diagnosis was made by taking consideration of her clinical characteristics.
RESULTS:
The child has presented with global developmental delay, particularly in fine motor skill and language development, in addition with intellectual disability. Genetic testing revealed that she has harbored a heterozygous c.1861dup variant of the IQSEC2 gene, which was not detected in either parent.
CONCLUSION
The de novo c.186ldup variant of the IQSEC2 gene probably underlay the X-linked mental retardation in this child. Above finding has, expanded the spectrum of IQSEC2 gene mutations and provide a basis for the diagnosis of similar cases.
Female
;
Guanine Nucleotide Exchange Factors/genetics*
;
Heterozygote
;
Humans
;
Intellectual Disability/genetics*
;
Mental Retardation, X-Linked/genetics*
;
Mutation
;
Phenotype
6.Restoration of FMRP expression in adult V1 neurons rescues visual deficits in a mouse model of fragile X syndrome.
Chaojuan YANG ; Yonglu TIAN ; Feng SU ; Yangzhen WANG ; Mengna LIU ; Hongyi WANG ; Yaxuan CUI ; Peijiang YUAN ; Xiangning LI ; Anan LI ; Hui GONG ; Qingming LUO ; Desheng ZHU ; Peng CAO ; Yunbo LIU ; Xunli WANG ; Min-Hua LUO ; Fuqiang XU ; Wei XIONG ; Liecheng WANG ; Xiang-Yao LI ; Chen ZHANG
Protein & Cell 2022;13(3):203-219
Many people affected by fragile X syndrome (FXS) and autism spectrum disorders have sensory processing deficits, such as hypersensitivity to auditory, tactile, and visual stimuli. Like FXS in humans, loss of Fmr1 in rodents also cause sensory, behavioral, and cognitive deficits. However, the neural mechanisms underlying sensory impairment, especially vision impairment, remain unclear. It remains elusive whether the visual processing deficits originate from corrupted inputs, impaired perception in the primary sensory cortex, or altered integration in the higher cortex, and there is no effective treatment. In this study, we used a genetic knockout mouse model (Fmr1KO), in vivo imaging, and behavioral measurements to show that the loss of Fmr1 impaired signal processing in the primary visual cortex (V1). Specifically, Fmr1KO mice showed enhanced responses to low-intensity stimuli but normal responses to high-intensity stimuli. This abnormality was accompanied by enhancements in local network connectivity in V1 microcircuits and increased dendritic complexity of V1 neurons. These effects were ameliorated by the acute application of GABAA receptor activators, which enhanced the activity of inhibitory neurons, or by reintroducing Fmr1 gene expression in knockout V1 neurons in both juvenile and young-adult mice. Overall, V1 plays an important role in the visual abnormalities of Fmr1KO mice and it could be possible to rescue the sensory disturbances in developed FXS and autism patients.
Animals
;
Disease Models, Animal
;
Fragile X Mental Retardation Protein/metabolism*
;
Fragile X Syndrome/metabolism*
;
Humans
;
Mice
;
Mice, Knockout
;
Neurons/metabolism*
7.Analysis of a child with X-linked mental retardation due to a de novo variant of DDX3X gene.
Qiong WANG ; Ying YANG ; Lili LIU ; Xiaoling TIE ; Haihong LEI ; Liyu ZHANG ; Fengyu CHE
Chinese Journal of Medical Genetics 2022;39(10):1111-1115
OBJECTIVE:
To analyze the clinical characteristics and genetic variant of a child featuring X-linked mental retardation.
METHODS:
Whole exome sequencing and Sanger sequencing were used for the detection of variant and pedigree validation, respectively. Clinical manifestation of patients with DDX3X gene variants were also reviewed.
RESULTS:
The child was found to harbor a heterozygous NM_001193416.3: c.1332_1333delCT (p.Leu445Serfs*19) variant of the DDX3X gene. The same variant was not found in either of her parents.
CONCLUSION
The child was diagnosed with X-linked mental retardation due to variant of the DDX3X gene. Above finding has enriched the spectrum of DDX3X gene variants and provided a basis for clinical diagnosis and prenatal diagnosis for this pedigrees.
Child
;
DEAD-box RNA Helicases/genetics*
;
Female
;
Heterozygote
;
Humans
;
Intellectual Disability/genetics*
;
Mental Retardation, X-Linked/genetics*
;
Mutation
;
Pedigree
;
Pregnancy
;
Exome Sequencing
8.Clinical practice guidelines for Fragile X syndrome.
CLINICAL GENETICS GROUP OF MEDICAL GENETICIST BRANCH OF CHINESE MEDICAL DOCTOR ASSOCIATION ; CLINICAL GENETICS GROUP OF MEDICAL GENETICS BRANCH OF CHINESE MEDICAL ASSOCIATION ; GENETIC DISEASE PREVENTION AND CONTROL GROUP OF PROFESSIONAL COMMITTEE FOR BIRTH DEFECT PREVENTION AND CONTROL OF CHINESE PREVENTIVE MEDICINE ASSOCIATION ; Ranhui DUAN ; Guangxu LI ; Hui XI ; Ying PENG ; Lingqian WU
Chinese Journal of Medical Genetics 2022;39(11):1181-1186
Fragile X syndrome (FXS) is the most common monogenic form of inherited intellectual disability and autism spectrum disorder (ASD). More than 99% of individuals with FXS are caused by the unstable expansion of CGG repeats located within the 5'-untranslated region of the FMR1 gene. The clinical features of FXS include various degrees of cognitive deficit, physical, behavioral and psychiatric problems. Early treatment and prevention from having further affected children can be guided by molecular genetic testing of the FMR1 gene. The following guideline has combined the relevant research, guidelines and consensus worldwide, and summarized the genetic knowledge and clinical treatment for FXS in order to achieve a standardized diagnosis, treatment and prevention for patients and families affected by this disease.
Child
;
Humans
;
Autism Spectrum Disorder/therapy*
;
Fragile X Mental Retardation Protein/genetics*
;
Fragile X Syndrome/therapy*
;
Intellectual Disability/genetics*
10.Analysis of FMR1 gene CGG repeats among patients with diminished ovarian reserve.
Wenbin HE ; Weilin TANG ; Yi LIAO ; Wen LI ; Fei GONG ; Guangxiu LU ; Ge LIN ; Juan DU ; Yueqiu TAN
Chinese Journal of Medical Genetics 2021;38(4):343-346
OBJECTIVE:
To explore the correlation between Fragile X mental retardation gene-1 (FMR1) gene CGG repeats with diminished ovarian reserve (DOR).
METHODS:
For 214 females diagnosed with DOR, DNA was extracted from peripheral blood samples. FMR1 gene CGG repeats were determined by PCR and capillary electrophoresis.
RESULTS:
Three DOR patients were found to carry FMR1 premutations, and one patient was found to carry gray zone FMR1 repeats. After genetic counseling, one patient and the sister of another patient, both carrying FMR1 permutations, conceived naturally. Prenatal diagnosis showed that both fetuses have carried FMR1 permutations.
CONCLUSION
FMR1 gene permutation may be associated with DOR. Determination of FMR1 gene CGG repeats in DOR patients can provide a basis for genetic counseling and guidance for reproduction.
Female
;
Fragile X Mental Retardation Protein/metabolism*
;
Fragile X Syndrome/genetics*
;
Humans
;
Ovarian Diseases
;
Ovarian Reserve/genetics*
;
Primary Ovarian Insufficiency/genetics*
;
Trinucleotide Repeats/genetics*

Result Analysis
Print
Save
E-mail