1.Spermidine inactivates proteasome activity and enhances ferroptosis in prostate cancer.
Dan FENG ; Jian ZHANG ; Huanmin NIU ; Xiaoxue ZHENG ; Mengqi JIA ; Qiqi LU ; Jing WANG ; Wenxue GUO ; Qi SUN ; Huiqing YUAN ; Hongxiang LOU
Acta Pharmaceutica Sinica B 2025;15(4):2095-2113
The elevated polyamines, amine-rich molecules with diverse functions in pathophysiology processes, are implicated in contributing to tumorigenesis and progression. Whether and how they affect the efficacy of chemotherapy is incompletely understood. Our screening assays reveal that the supplement with a low dose of spermidine (Spd), one of the polyamines, enhances ferroptosis in prostate cancer cells as evidenced by increased lipid peroxidation and intracellular Fe2+ levels in vitro. Combination treatment with Spd and a low dose of ferroptosis inducer erastin synergistically augments anti-tumor efficacy with undetectable toxicity in mice. Analysis of RNA-seq data indicates that heme oxygenase 1 (HMOX1), an enzyme that catalyzes the cleavage of heme to release Fe2+, is significantly upregulated in response to Spd and erastin cotreatment. Spd mediated the hypusine modification of the eukaryotic initiation factor 5A (EIF5A) promotes the translation of the nuclear factor erythroid 2-related factor 2 (NRF2), subsequently leading to elevation of HMOX1. Moreover, Spd and erastin significantly inhibit proteasome activity which results in a decrease in proteasomal degradation of NRF2, although many proteasome-related genes are induced either by Spd or Spd plus erastin. Thus, in addition to its pro-oncogenic activity, the supplement of Spd improves antitumor activity in combination with ferroptosis inducers and offers an optional approach to cancer treatment.
2.Analysis on Determination and Quantity Transfer of Standard Decoction of Ginseng Radix et Rhizoma by Fresh and Traditional Cutting
Xuejing ZHANG ; Mengdan XU ; Xiaokang LIU ; Juan SHAO ; Mengqi LU ; Xiaoyan XIE ; Guangzhi CAI ; Jiyu GONG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(9):132-140
ObjectiveTo analyze the quantity-quality transfer of standard decoction of Ginseng Radix et Rhizoma(GRR) decoction pieces produced by fresh and traditional cutting, and to provide reference for quality control and application development of the decoction pieces produced by fresh cutting. MethodTen batches of representative GRR decoction pieces produced by fresh and traditional cutting and their standard decoctions were prepared by standard process, and high performance liquid chromatography(HPLC) fingerprint of the standard decoction was established and performed on an Agilent EC-C18 column(4.6 mm×150 mm, 2.7 μm) with acetonitrile(A)-0.1% phosphoric acid aqueous solution(B) as the mobile phase for gradient elution(0-23 min, 18%-21%A; 23-35 min, 21%-28%A; 35-80 min, 28%-32%A), and the detection wavelength was 203 nm. Then similarity evaluation, principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA) of fingerprint of the standard decoction were performed to screen the differential components with variable importance in the projection(VIP) value>1. Quantitative analysis was carried out on the screened known differential components, and combined with the indicators of the dry extract rate and the transfer rate, to explore the differences in the quantity-quality transfer between the standard decoction of GRR decoction pieces produced by fresh and traditional cutting. ResultThe fingerprint similarity of the standard decoction of GRR decoction pieces produced by fresh and traditional cutting was more than 0.950, and 18 common peaks were identified, including 9 identified common peaks. The results of PCA and PLS-DA showed that there were some differences in the contents of index components between the two standard decoctions. The contents of ginsenoside Rg1, Re and Ro in GRR decoction pieces produced by fresh cutting were higher than those in traditional decoction pieces, while the contents of ginsenoside Rb1, Rc , Rb2 and Rd were lower than those in traditional decoction pieces. The contents of ginsenoside Rg1, Re, Rb1 and Ro in the standard decoction of GRR decoction pieces produced by fresh cutting were higher than those in the standard decoction of traditional decoction pieces, while the contents of ginsenoside Rc , Rb2 and Rd were comparable between the two standard decoctions. Compared with the standard decoction of the traditional decoction pieces, the average transfer rates of ginsenoside Rg1, Rb1, Rc, Rb2 and dry extract rate of the standard decoction of GRR decoction pieces produced by fresh cutting were significantly increased(P<0.05), and the average transfer rate of ginsenoside Re and Rd also increased, but the difference was not statistically significant. ConclusionThe dry extract rate, content and transfer rate of index components of standard decoction of GRR decoction pieces produced by fresh cutting are better than those of the standard decoction of traditional decoction pieces, which can provides data support for the subsequent clinical application of fresh cutting products.
3.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
4.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
5.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
6.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
7.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
8.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
9.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
10.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.

Result Analysis
Print
Save
E-mail