1.Preclinical and early clinical studies of a novel compound SYHA1813 that efficiently crosses the blood-brain barrier and exhibits potent activity against glioblastoma.
Yingqiang LIU ; Zhengsheng ZHAN ; Zhuang KANG ; Mengyuan LI ; Yongcong LV ; Shenglan LI ; Linjiang TONG ; Fang FENG ; Yan LI ; Mengge ZHANG ; Yaping XUE ; Yi CHEN ; Tao ZHANG ; Peiran SONG ; Yi SU ; Yanyan SHEN ; Yiming SUN ; Xinying YANG ; Yi CHEN ; Shanyan YAO ; Hanyu YANG ; Caixia WANG ; Meiyu GENG ; Wenbin LI ; Wenhu DUAN ; Hua XIE ; Jian DING
Acta Pharmaceutica Sinica B 2023;13(12):4748-4764
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults and is poorly controlled. Previous studies have shown that both macrophages and angiogenesis play significant roles in GBM progression, and co-targeting of CSF1R and VEGFR is likely to be an effective strategy for GBM treatment. Therefore, this study developed a novel and selective inhibitor of CSF1R and VEGFR, SYHA1813, possessing potent antitumor activity against GBM. SYHA1813 inhibited VEGFR and CSF1R kinase activities with high potency and selectivity and thus blocked the cell viability of HUVECs and macrophages and exhibited anti-angiogenetic effects both in vitro and in vivo. SYHA1813 also displayed potent in vivo antitumor activity against GBM in immune-competent and immune-deficient mouse models, including temozolomide (TMZ) insensitive tumors. Notably, SYHA1813 could penetrate the blood-brain barrier (BBB) and prolong the survival time of mice bearing intracranial GBM xenografts. Moreover, SYHA1813 treatment resulted in a synergistic antitumor efficacy in combination with the PD-1 antibody. As a clinical proof of concept, SYHA1813 achieved confirmed responses in patients with recurrent GBM in an ongoing first-in-human phase I trial. The data of this study support the rationale for an ongoing phase I clinical study (ChiCTR2100045380).
2.Structure-based drug discovery of novel fused-pyrazolone carboxamide derivatives as potent and selective AXL inhibitors.
Feifei FANG ; Yang DAI ; Hao WANG ; Yinchun JI ; Xuewu LIANG ; Xia PENG ; Jiyuan LI ; Yangrong ZHAO ; Chunpu LI ; Danyi WANG ; Yazhou LI ; Dong ZHANG ; Dan ZHANG ; Meiyu GENG ; Hong LIU ; Jing AI ; Yu ZHOU
Acta Pharmaceutica Sinica B 2023;13(12):4918-4933
As a novel and promising antitumor target, AXL plays an important role in tumor growth, metastasis, immunosuppression and drug resistance of various malignancies, which has attracted extensive research interest in recent years. In this study, by employing the structure-based drug design and bioisosterism strategies, we designed and synthesized in total 54 novel AXL inhibitors featuring a fused-pyrazolone carboxamide scaffold, of which up to 20 compounds exhibited excellent AXL kinase and BaF3/TEL-AXL cell viability inhibitions. Notably, compound 59 showed a desirable AXL kinase inhibitory activity (IC50: 3.5 nmol/L) as well as good kinase selectivity, and it effectively blocked the cellular AXL signaling. In turn, compound 59 could potently inhibit BaF3/TEL-AXL cell viability (IC50: 1.5 nmol/L) and significantly suppress GAS6/AXL-mediated cancer cell invasion, migration and wound healing at the nanomolar level. More importantly, compound 59 oral administration showed good pharmacokinetic profile and in vivo antitumor efficiency, in which we observed significant AXL phosphorylation suppression, and its antitumor efficacy at 20 mg/kg (qd) was comparable to that of BGB324 at 50 mg/kg (bid), the most advanced AXL inhibitor. Taken together, this work provided a valuable lead compound as a potential AXL inhibitor for the further antitumor drug development.
3.Antigen presentation and T cell activation by dendritic cells in radiation damage
Qian LI ; Shuang GENG ; Chengming YAN ; Haoxin GUO ; Zhixin WANG ; Meiyu WANG ; Benbo LIU ; Xu WANG ; Yilong WANG ; Zhihua YANG ; Maoxiang ZHU
Chinese Journal of Radiological Health 2022;31(6):657-662
Objective To explore dendritic cells (DCs)-mediated antigen presentation for radiation-injured cells by using the in vitro cell co-culture technology to simulate the in vivo microenvironment of the lung tissue. Methods 60Co γ-irradiated mouse lung epithelial cells (MLE-12) were cultured with bone marrow-derived DCs and/or splenic T lymphocytes for 48 hours. Flow cytometry was used to measure the expression levels of costimulatory molecules (CD80/86) and antigenic peptide recognition complexes (the major histocompatibility complex [MHC] class Ⅰ/Ⅱ) on DCs and T cell activation markers (CD69/28/152) as well as the numbers of CD4+ and CD8+ T cells. Results 60Co γ irradiation significantly increased the apoptosis rate of MLE-12 cells in a dose-dependent manner, and significantly stimulated the expression of CD80/86 and MHC Ⅱ on DCs, without direct activation of T cells. After γ (6 Gy)-irradiated MLE-12 cells were co-cultured with DCs and T lymphocytes for 48 h, there were significant increases in the expression of CD69 and CD28 on T cells, the numbers of CD4+ and CD8+ T cells, and the expression of CD86 and MHC I on DCs, as compared with the control groups. Conclusion Radiation-injured cells can stimulate antigen presentation by DCs and activate T cells.
4.Role of complement in radiation-induced lung injury
Shuang GENG ; Qian LI ; Tingting XI ; Meiyu WANG ; Haoxin GUO ; Zhixin WANG ; Xiaoguang BI ; Chengming YAN ; Zhihua YANG ; Yilong WANG ; Maoxiang ZHU
Chinese Journal of Radiological Health 2022;31(5):535-541
Objective To investigate the role of complement in radiation-induced lung injury in mice after chest irradiation with 60Co γ-rays at a single dose of 20 Gy. Methods C57BL/6 mice underwent chest irradiation with 60Co γ-rays at a single dose of 20 Gy, followed by observation for the inflammatory reaction of the lung tissue in the early stage (within 15 d) and pulmonary fibrosis in the later stage (30 and 180 d). Enzyme-linked immunosorbent assay was used to measure the levels of C2, C3a, C4, and C5b-9 in the lung tissues at 1, 3, 7, 15, 30, and 180 d after irradiation. The expression of complement mRNA in BEAS-2B cells after irradiation was determined using RT-PCR. Results Radiation-induced lung injury in micepresented as inflammatory response in the early stage and fibrosis in the late stage. Complement C2, C4, and C5b-9 complexes were increased in the early period (3 or 7 d) after irradiation (P < 0.05), which might be associated with the inflammatory response induced by irradiation. During 3 to 180 d, complement C3a was significantly higher in the irradiated mice than in the control mice, suggesting a close relationship between C3a and radiation-induced lung injury. The irradiated cells showed increased mRNA expression of C2 and C3, with no changes in the mRNA levels of C4 and C5. Conclusion Different complement proteins have varying responses to radiation-induced lung injury, among which C3a is closely related to radiation-induced lung injury, suggesting that regulating C3a and its receptors may be a new way to prevent and treat radiation-induced lung injury.
5.Pharmacokinetics,distribution,and excretion of sodium oligomannate,a recently approved anti-Alzheimer's disease drug in China
Jiaojiao LU ; Qiongqun PAN ; Jieqiang ZHOU ; Yan WENG ; Kaili CHEN ; Lv SHI ; Guanxiu ZHU ; Chunlin CHEN ; Liang LI ; Meiyu GENG ; Zhenqing ZHANG
Journal of Pharmaceutical Analysis 2022;12(1):145-155
The National Medical Products Administration has authorized sodium oligomannate for treating mild-to-moderate Alzheimer's disease.In this study,an LC-MS/MS method was developed and validated to quantitate sodium oligomannate in different biomatrices.The plasma pharmacokinetics,tissue distri-bution,and excretion of sodium oligomannate in Sprague-Dawley rats and beagle dogs were system-atically investigated.Despite its complicated structural composition,the absorption,distribution,metabolism,and excretion profiles of the oligosaccharides in sodium oligomannate of different sizes and terminal derivatives were indiscriminate.Sodium oligomannate mainly crossed the gastrointestinal epithelium through paracellular transport following oral administration,with very low oral bioavail-ability in rats(0.6%-1.6%)and dogs(4.5%-9.3%).Absorbed sodium oligomannate mainly resided in circulating body fluids in free form with minimal distribution into erythrocytes and major tissues.So-dium oligomannate could penetrate the blood-cerebrospinal fluid(CSF)barrier of rats,showing a con-stant area under the concentration-time curve ratio(CSF/plasma)of approximately 5%.The cumulative urinary excretion of sodium oligomannate was commensurate with its oral bioavailability,supporting that excretion was predominantly renal,whereas no obvious biliary secretion was observed following a single oral dose to bile duct-cannulated rats.Moreover,only 33.7%(male)and 26.3%(female)of the oral dose were recovered in the rat excreta within 96 h following a single oral administration,suggesting that the intestinal flora may have ingested a portion of unabsorbed sodium oligomannate as a nutrient.
6.Design, synthesis and biological evaluation of pyrazolo3,4-
Xiaowei WU ; Mengdi DAI ; Rongrong CUI ; Yulan WANG ; Chunpu LI ; Xia PENG ; Jihui ZHAO ; Bao WANG ; Yang DAI ; Dan FENG ; Tianbiao YANG ; Hualiang JIANG ; Meiyu GENG ; Jing AI ; Mingyue ZHENG ; Hong LIU
Acta Pharmaceutica Sinica B 2021;11(3):781-794
Fibroblast growth factor receptors (FGFRs) have emerged as promising targets for anticancer therapy. In this study, we synthesized and evaluated the biological activity of 66 pyrazolo[3,4-
7.Discovery of a series of dimethoxybenzene FGFR inhibitors with 5pyrrolo2,3-pyrazine scaffold: structure-activity relationship, crystal structural characterization and study.
Peng WEI ; Bo LIU ; Ruifeng WANG ; Yinglei GAO ; Lanlan LI ; Yuchi MA ; Zhiwei QIAN ; Yuelei CHEN ; Maosheng CHENG ; Meiyu GENG ; Jingkang SHEN ; Dongmei ZHAO ; Jing AI ; Bing XIONG
Acta Pharmaceutica Sinica B 2019;9(2):351-368
Genomic alterations are commonly found in the signaling pathways of fibroblast growth factor receptors (FGFRs). Although there is no selective FGFR inhibitors in market, several promising inhibitors have been investigated in clinical trials, and showed encouraging efficacies in patients. By designing a hybrid between the FGFR-selectivity-enhancing motif dimethoxybenzene group and our previously identified novel scaffold, we discovered a new series of potent FGFR inhibitors, with the best one showing sub-nanomolar enzymatic activity. After several round of optimization and with the solved crystal structure, detailed structure-activity relationship was elaborated. Together with metabolic stability tests and pharmacokinetic profiling, a representative compound () was selected and tested in xenograft mouse model, and the result demonstrated that inhibitor was effective against tumors with FGFR genetic alterations, exhibiting potential for further development.
8.Targeting ERK, an Achilles' Heel of the MAPK pathway, in cancer therapy.
Feifei LIU ; Xiaotong YANG ; Meiyu GENG ; Min HUANG
Acta Pharmaceutica Sinica B 2018;8(4):552-562
The mitogen-activated protein kinases (MAPK) pathway, often known as the RAS-RAF-MEK-ERK signal cascade, functions to transmit upstream signals to its downstream effectors to regulate physiological process such as cell proliferation, differentiation, survival and death. As the most frequently mutated signaling pathway in human cancer, targeting the MAPK pathway has long been considered a promising strategy for cancer therapy. Substantial efforts in the past decades have led to the clinical success of BRAF and MEK inhibitors. However, the clinical benefits of these inhibitors are compromised by the frequently occurring acquired resistance due to cancer heterogeneity and genomic instability. This review briefly introduces the key protein kinases involved in this pathway as well as their activation mechanisms. We also generalize the correlations between mutations of MAPK members and human cancers, followed by a summarization of progress made on the development of small molecule MAPK kinases inhibitors. In particular, this review highlights the potential advantages of ERK inhibitors in overcoming resistance to upstream targets and proposes that targeting ERK kinase may hold a promising prospect for cancer therapy.
9.Tetrahydroisoquinolines as novel histone deacetylase inhibitors for treatment of cancer.
Danqi CHEN ; Aijun SHEN ; Guanghua FANG ; Hongchun LIU ; Minmin ZHANG ; Shuai TANG ; Bing XIONG ; Lanping MA ; Meiyu GENG ; Jingkang SHEN
Acta Pharmaceutica Sinica B 2016;6(1):93-99
Histone acetylation is a critical process in the regulation of chromatin structure and gene expression. Histone deacetylases (HDACs) remove the acetyl group, leading to chromatin condensation and transcriptional repression. HDAC inhibitors are considered a new class of anticancer agents and have been shown to alter gene transcription and exert antitumor effects. This paper describes our work on the structural determination and structure-activity relationship (SAR) optimization of tetrahydroisoquinoline compounds as HDAC inhibitors. These compounds were tested for their ability to inhibit HDAC 1, 3, 6 and for their ability to inhibit the proliferation of a panel of cancer cell lines. Among these, compound 82 showed the greatest inhibitory activity toward HDAC 1, 3, 6 and strongly inhibited growth of the cancer cell lines, with results clearly superior to those of the reference compound, vorinostat (SAHA). Compound 82 increased the acetylation of histones H3, H4 and tubulin in a concentration-dependent manner, suggesting that it is a broad inhibitor of HDACs.
10.Chromopeptide A, a highly cytotoxic depsipeptide from the marine sediment-derived bacterium Chromobacterium sp. HS-13-94.
Zhenfang ZHOU ; Xin WANG ; Hui ZHANG ; Jingya SUN ; Linghui ZHENG ; Hongchun LIU ; Jidong WANG ; Aijun SHEN ; Meiyu GENG ; Yuewei GUO
Acta Pharmaceutica Sinica B 2015;5(1):62-66
A bicyclic depsipeptide, chromopeptide A (1), was isolated from a deep-sea-derived bacterium Chromobacterium sp. HS-13-94. Its structure was determined by extensive spectroscopic analysis and by comparison with a related known compound. The absolute configuration of chromopeptide A was established by X-ray diffraction analysis employing graphite monochromated Mo K α radiation (λ=0.71073 Å) with small Flack parameter 0.03. Chromopeptide A suppressed the proliferation of HL-60, K-562, and Ramos cells with average IC50 values of 7.7, 7.0, and 16.5 nmol/L, respectively.


Result Analysis
Print
Save
E-mail