1.Analysis of thyroid hormone levels and prevalence of thyroid abnormalities in 1152 radiation workers
Meilin CHEN ; Shuangyu YANG ; Yan ZHANG ; Haibo HUANG ; Zhi WANG ; Zhenzhong LIU ; Jianyu WANG
Chinese Journal of Radiological Health 2025;34(4):590-594
Objective To investigate the effects of low-dose ionizing radiation on the thyroid status and hormone levels of radiation workers. Methods Radiation workers who underwent occupational health examinations at a hospital in Guangzhou from 2015 to 2022 were selected as the subjects of this study. The levels of FT3, FT4 and TSH were analyzed, and the thyroid abnormality status of radiation workers in different groups were compared. Results A total of
2.Intraoperative targeted blood pressure management and dexmedetomidine on composite complications in moderate-to-high risk patients after major abdominal surgery.
Qiongfang WU ; Haifeng WANG ; Meilin LI ; Wenjun HU ; Shuting HE ; Yanling SUN ; Dongliang MU ; Daniel I SESSLER ; Dongxin WANG
Chinese Medical Journal 2025;138(2):240-242
3.Intermittent fasting ameliorates rheumatoid arthritis by harassing deregulated synovial fibroblasts.
Lei LI ; Jin DONG ; Yumu ZHANG ; Chen ZHAO ; Wen WEI ; Xueqin GAO ; Yao YU ; Meilin LU ; Qiyuan SUN ; Yuwei CHEN ; Xuehua JIAO ; Jie LU ; Na YUAN ; Yixuan FANG ; Jianrong WANG
Chinese Medical Journal 2025;138(23):3201-3203
4.Association of NLRP3 genetic variant rs10754555 with early-onset coronary artery disease.
Lingfeng ZHA ; Chengqi XU ; Mengqi WANG ; Shaofang NIE ; Miao YU ; Jiangtao DONG ; Qianwen CHEN ; Tian XIE ; Meilin LIU ; Fen YANG ; Zhengfeng ZHU ; Xin TU ; Qing K WANG ; Zhilei SHAN ; Xiang CHENG
Chinese Medical Journal 2025;138(21):2844-2846
5.Csde1 Mediates Neurogenesis via Post-transcriptional Regulation of the Cell Cycle.
Xiangbin JIA ; Wenqi XIE ; Bing DU ; Mei HE ; Jia CHEN ; Meilin CHEN ; Ge ZHANG ; Ke WANG ; Wanjing XU ; Yuxin LIAO ; Senwei TAN ; Yongqing LYU ; Bin YU ; Zihang ZHENG ; Xiaoyue SUN ; Yang LIAO ; Zhengmao HU ; Ling YUAN ; Jieqiong TAN ; Kun XIA ; Hui GUO
Neuroscience Bulletin 2025;41(11):1977-1990
Loss-of-function variants in CSDE1 have been strongly linked to neuropsychiatric disorders, yet the precise role of CSDE1 in neurogenesis remains elusive. In this study, we demonstrate that knockout of Csde1 during cortical development in mice results in impaired neural progenitor proliferation, leading to abnormal cortical lamination and embryonic lethality. Transcriptomic analysis revealed that Csde1 upregulates the transcription of genes involved in the cell cycle network. Applying a dual thymidine-labelling approach, we further revealed prolonged cell cycle durations of neuronal progenitors in Csde1-knockout mice, with a notable extension of the G1 phase. Intersection with CLIP-seq data demonstrated that Csde1 binds to the 3' untranslated region (UTR) of mRNA transcripts encoding cell cycle genes. Particularly, we uncovered that Csde1 directly binds to the 3' UTR of mRNA transcripts encoding Cdk6, a pivotal gene in regulating the transition from the G1 to S phases of the cell cycle, thereby maintaining its stability. Collectively, this study elucidates Csde1 as a novel regulator of Cdk6, sheds new light on its critical roles in orchestrating brain development, and underscores how mutations in Csde1 may contribute to the pathogenesis of neuropsychiatric disorders.
Animals
;
Neurogenesis/genetics*
;
Cell Cycle/genetics*
;
Mice, Knockout
;
Mice
;
Neural Stem Cells/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Cyclin-Dependent Kinase 6/genetics*
;
Cell Proliferation
;
3' Untranslated Regions
;
Cerebral Cortex/embryology*
;
RNA-Binding Proteins
;
Mice, Inbred C57BL
6.Construction and application of an inducible transcriptional regulatory tool from Medicago truncatula in Saccharomyces cerevisiae.
Meilin FENG ; Caifang SHI ; Ying WANG ; Chun LI
Chinese Journal of Biotechnology 2025;41(1):363-375
Transcriptional regulation based on transcription factors is an effective regulatory method widely used in microbial cell factories. Currently, few naturally transcriptional regulatory elements have been discovered from Saccharomyces cerevisiae and applied. Moreover, the discovered elements cannot meet the demand for specific metabolic regulation of exogenous compounds due to the high background expression or narrow dynamic ranges. There are abundant transcriptional regulatory elements in plants. However, the sequences and functions of most elements have not been fully characterized and optimized. Particularly, the applications of these elements in microbial cell factories are still in the infancy stage. In this study, natural regulatory elements from Medicago truncatula were selected, including the transcription factors MtTASR2 and MtTASR3, along with their associated promoter ProHMGR1, for functional characterization and engineering modification. We constructed an inducible transcriptional regulation tool and applied it in the regulation of heterologous β-carotene synthesis in S. cerevisiae, which increased the β-carotene production by 7.31 folds compared with the original strain. This study demonstrates that plant-derived transcriptional regulatory elements can be used to regulate the expression of multiple genes in S. cerevisiae, providing new strategies and ideas for the specific regulation and application of these elements in microbial cell factories.
Medicago truncatula/metabolism*
;
Saccharomyces cerevisiae/metabolism*
;
Transcription Factors/genetics*
;
beta Carotene/biosynthesis*
;
Promoter Regions, Genetic/genetics*
;
Gene Expression Regulation, Plant
;
Metabolic Engineering/methods*
;
Regulatory Elements, Transcriptional/genetics*
;
Plant Proteins/genetics*
7.Multi-omics research progress in early-onset colorectal cancer
Silu CHEN ; Junyi XIN ; Mulong DU ; Meilin WANG
Chinese Journal of Gastrointestinal Surgery 2024;27(5):447-451
Globally, the incidence of early-onset colorectal cancer (EOCRC) among individuals younger than 50 is escalating. Compared to late-onset colorectal cancer, EOCRC exhibits distinct clinical, pathological, and molecular features, with a higher prevalence in the left colon and rectum. However, the occurrence and development of EOCRC is a multi-factor and multi-stage evolution process, which is the result of the mutual effect of environmental, genetic and biological factors, and involves the multi-level regulation mechanism of other organisms. With the development and improvement of high-throughput sequencing technology, the application of multi-omics analysis has become an important development direction to resolve the pathogenesis of complex diseases and individualized treatment plans. This article aims to review the research progress of EOCRC at the multi-omics level, providing a theoretical foundation for earlier diagnosis and more precise treatment of this diseases.
8.Compound ANBP promotes diabetic wound healing by regulating TCA circulation-related enzymes
Wei WANG ; Qian HOU ; Xinling HUANG ; Jun WANG ; Meilin ZOU ; Yarong DING ; Letian GUO ; Chenlei XIE ; Xinyu HUANG ; Li CHEN ; Zhongzhi ZHOU
Chinese Journal of Pathophysiology 2024;40(7):1283-1291
AIM:To investigate the effects of the compound ANBP on wound healing in diabetic rats and ex-plore its mechanism of action.METHODS:Ninety male SD rats were randomly divided into blank,model,compound ANBP,Beifuxin,and nicotinamide mononucleotide(NMN)groups,with 16 rats in each group.Wound healing in each group was observed and samples were taken on days 3,7 and 14 to analyze the wound healing rate.Local histopathological changes were observed using HE and Masson staining.The expressions of pyruvate dehydrogenase E1 subunit alpha 1(PDHA1),citrate synthase(CS),isocitrate dehydrogenase(IDH1)and oxoglutarate dehydrogenase(OGDH)were de-tected through immunofluorescence and Western blot.The number and morphology of mitochondria in the wound tissue were observed using transmission electron microscopy.RESULTS:Histomorphological changes revealed significant im-provement in diabetic wound healing in the blank and compound ANBP groups compared to that of the model group.The wound healing rates of the blank,compound ANBP,Beifuxin,and NMN groups were significantly increased on days 3,7,and 14(P<0.01).Compared to the model group,granulation tissue generation was higher in the other groups,cover-ing the wound defect and producing abundant collagen fibers.At 3,7,and 14 days after intervention,the blank,com-pound ANBP,Beifuxin,and NMN groups showed significantly enhanced fluorescence intensities of TCA cycling-related enzymes PDHA1,CS,IDH1,and OGDH indicating increased expression of these enzymes.The levels of the TCA cy-cling-related enzymes were significantly increased(P<0.01)in the compound ANBP,Beifuxin and NMN groups but were significantly decreased(P<0.01)in the model group.An increase in the number and density of mitochondria and a de-crease in the cavitation rate of mitochondria with improved morphology(P<0.05)was observed in the group treated with compound ANBP.CONCLUSION:Compound ANBP may increase the number of mitochondria,improve mitochondrial morphology and function,upregulate the expression levels of PDHA1,CS,IDH1,and OGDH proteins,and accelerate the regeneration of wound granulation tissue,thus promoting the healing of diabetic wounds in rats.
9.GLUT1-targeted Nano-delivery System for Active Ingredients of Traditional Chinese Medicine:A Review
Hua ZHU ; Huimin LUO ; Si LIN ; Bingbing WANG ; Jinwei LI ; Liba XU ; Miao ZHANG ; Fengfeng XIE ; Long CHEN ; Meilin LI ; Lu LU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(12):270-280
Tumor cells use glycolysis to provide material and energy under hypoxic conditions to meet the energy requirements for rapid growth and proliferation, namely the Warburg effect. Even under aerobic conditions, tumor cells mainly rely on glycolysis to provide energy. Therefore, glucose transporter protein 1(GLUT1), which is involved in the process of glucose metabolism, plays an important role in tumorigenesis, development and drug resistance, and is considered to be one of the important targets in the treatment of malignant tumors. In recent years, research on tumor glucose metabolism has gradually become a hot spot. It has been shown that various factors are involved in the regulation of tumor energy metabolism, among which the role of GLUT1 is the most critical. In this paper, the authors reviewed the latest research progress of GLUT1-targeted traditional Chinese medicine(TCM) active ingredient nano-delivery system in tumor therapy, aiming to reveal the feasibility and effectiveness of this system in the delivery of chemotherapeutic drugs. The GLUT1-targeted TCM active ingredient nano-delivery system can overcome the bottleneck of the traditional targeting strategy as well as the high-permeability long retention(EPR) effect. In summary, the authors believe that the GLUT1-targeted TCM active ingredient nano-delivery system provides a new strategy for targeted treatment of tumors and has a broad application prospect in tumor prevention and treatment.
10.Effects of probiotics combined with dietary intervention on glucose and lipid metabolism and pregnancy outcome in gestational diabetes mellitus
Zhijuan QIN ; Zongli MA ; Meilin ZOU ; Xiaoqin ZHU ; Shu LIU ; Xiaomei WANG
Chongqing Medicine 2024;53(1):102-107,113
Objective To investigate the effects of probiotics combined with dietary intervention on pe-ripheral blood glucose and lipid metabolism indicators,placental tissue insulin signaling pathway proteins ex-pression and pregnant outcome in the patients with gestational diabetes mellitus(GDM).Methods A total of 83 patients with GDM in this hospital from December 2021 to December 2022 were selected as the study sub-jects and divided into the probiotics group(probiotics combined with diet intervention,43 cases)and control group(simple diet intervention,40 cases)by the random number table method.The levels of peripheral blood glucose,lipid and insulin resistance related indicators before the intervention and in 8 weeks after the interven-tion were compared between the two groups.The histological changes of placenta were observed by HE stai-ning.The pathological indicators were compared between the two groups.The expression levels of insulin re-ceptor substrate-1(IRS-1),glucose transporter 4(GLUT4)and synaptosome-associated protein of 23 kDa(SNAP23)in placental tissue were detected by immunohistochemistry.The pregnant adverse outcomes were compared between the two groups,and the clinical efficacy of probiotics was evaluated.Results Compared with the control group,the levels of fasting blood glucose(FBG),fasting insulin(FINS),serum triglyceride(TG)and low density lipoprotein cholesterol(LDL-C)in 8 weeks after intervention in the probiotics group were significantly decreased(P<0.05),and the level of serum high density lipoprotein cholesterol(HDL-C)was significantly increased(P<0.05).There were no significant differences in the incidence rates of poor villi maturation,thickening of dry villi arterioles and capillary filling in villi interstitial between the two groups(P>0.05).Compared with the control group,the expression levels of IRS-1,GLUT4 and SNAP23 in placen-tal tissue of the probiotics group were significantly increased(P<0.05).The incidence rates of neonatal hy-poglycemia and neonatal hyperbilirubinemia in the probiotics group were significantly lower than those in the control group(P<0.05).Conclusion Compared with simple dietary intervention,probiotics combined with dietary intervention has more advantages in improving glucose and lipid metabolism of GDM patients,moreo-ver reduces the adverse events occurrence in newborns.

Result Analysis
Print
Save
E-mail