1.miR-373 inhibits M2 polarization of tumor associated macrophages and affects rectal cancer cells by regulating JAK2/STAT6 signal pathway.
Zhi LI ; Di WU ; Xingming XIE ; Fei TIAN ; Jie LIU
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):211-220
Objective To explore the effects of miR-373 and Janus kinase 2/signal transducer and activator of transcription 6 (JAK2/STAT6) signaling pathways on the M2 polarization of tumor associated macrophages (TAM) in rectal cancer. Methods THP-1 cells were induced into M0/M1/M2 macrophages, M0 macrophages were cocultured with Caco-2 cells to obtain TAM, Flow cytometry was used to detect the expression of CD86 and CD206, Real-time quantitative qPCR and Western blot were used to detect miR-373, inducible nitric oxide synthase (iNOS), toll-like receptor 4 (TLR-4), interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), arginase 1 (Arg1), chitinase 3-like 1 (Ym1), resistin like α (Fizz1), IL-10 mRNA and protein levels. TAM were transfected and divided into overexpressing miR-373 group (miR-373-TAM) and control group (miR-NC-TAM), overexpressing miR-373+JAK2-TAM group (miR-373 combined with JAK2-TAM) and control group (miR-373 combined with NC-TAM), and then cocultured with Caco-2 cells. Flow cytometry was used to detect the expression of CD206 in TAM; Real-time quantitative PCR and Western blot were used to detect miR-373, Arg1, Ym1, Fizz1, IL-10, JAK2, STAT6 mRNA and protein levels in TAM; CCK-8 assay, colony formation assay, and Transwell assay were used to detect the proliferation, migration, and invasion ability of Caco-2 cells. Thirty nude mice were randomly divided into Caco-2 cells group, Caco-2 cells combined with miR-NC-TAM group, and Caco-2 cells combined with miR-373-TAM group, with 10 mice in each group. Rats in each group were subcutaneously injected with pure Caco-2 cells, Caco-2 cells combined with TAM, and Caco-2 cells combined with TAM overexpressing miR-373. After 4 weeks of cell inoculation, immunofluorescence staining was used to detect F4/80+CD206+cells level in tumor tissue; Real-time quantitative PCR and Western blot were used to detect miR-373, JAK2, STAT6, Arg1, Ym1, Fizz1, IL-10 mRNA and protein levels in tumor tissues. Results TAM tended to M2 polarization. After overexpression of miR-373, miR-373 level in TAM was increased, while Arg1, Ym1, Fizz1, IL-10, JAK2, STAT6 mRNA and protein levels were decreased, proliferation, migration, invasion ability of Caco-2 cells were decreased; Overexpression of JAK2 could partially reverse the effect of overexpression of miR-373 on the M2 polarization of TAM and proliferation, migration, invasion ability of Caco-2 cells. TAM could promote tumor growth; Overexpression of miR-373 could inhibit tumor growth and inhibit M2 polarization of TAM. Conclusion miR-373 could inhibit M2 polarization of TAM in rectal cancer, and miR-373 might inhibit proliferation and metastasis of rectal cancer cells by regulating the JAK2/STAT6 pathway.
MicroRNAs/metabolism*
;
Humans
;
STAT6 Transcription Factor/genetics*
;
Signal Transduction/genetics*
;
Animals
;
Janus Kinase 2/genetics*
;
Mice
;
Tumor-Associated Macrophages/metabolism*
;
Rectal Neoplasms/pathology*
;
Caco-2 Cells
;
Mice, Nude
;
THP-1 Cells
;
Mice, Inbred BALB C
;
Cell Polarity
;
Male
2.The research on the mechanism of GBP2 promoting the progression of silicosis by inducing macrophage polarization and epithelial cell transformation.
Maoqian CHEN ; Jing WU ; Xuan LI ; Jiawei ZHOU ; Yafeng LIU ; Jianqiang GUO ; Anqi CHENG ; Dong HU
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):611-619
Objective This study aims to investigate the expression, phenotypic changes, and mechanisms of action of guanylate-binding protein 2 (GBP2) in the process of silica-induced pulmonary fibrosis. Methods The expression and localization of GBP2 in silicotic lung tissue were detected by immunohistochemical staining and immunofluorescence. An in vitro cell model was constructed, and methods such as Western blot and real-time quantitative reverse transcription polymerasechain reaction were utilized to investigate the function of GBP2 in different cell lines following silica stimulation. The mechanism of action of GBP2 in various cell lines was elucidated using Western blot analysis. Results GBP2 was highly expressed in the lung tissue of patients with silicosis. Immunohistochemical staining and immunofluorescence have revealed that GBP2 was localized in macrophages and epithelial cells. In vitro cell experiments demonstrated that silicon dioxide stimulated THP-1 cells to activate the c-Jun pathway through GBP2, promoting the secretion of inflammatory factors and facilitating the occurrence of M2 macrophage polarization. In epithelial cells, GBP2 promoted the occurrence of epithelial to mesenchymal transition (EMT) by upregulating Krueppel-like factor 8 (KLF8). Conclusion GBP2 not only activates c-Jun in macrophages to promote the production of inflammatory factors and the occurrence of M2 macrophage polarization, but also activates the transcription factor KLF8 in epithelial cells to induce EMT, collectively promoting the progression of silicosis.
Humans
;
Silicosis/genetics*
;
Macrophages/cytology*
;
Epithelial Cells/pathology*
;
GTP-Binding Proteins/physiology*
;
Epithelial-Mesenchymal Transition
;
Disease Progression
;
Cell Line
;
Male
3.Research progress on the role of macrophages in neutrophilic asthma.
Hongnian LU ; Yuting WU ; Tingting WANG ; Rong GAO ; Weizhen QIAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):837-843
Asthma is a chronic inflammatory disease of the airway involving various cellular players. Among the different phenotypes of asthma, neutrophilic asthma is often associated with severe airway inflammation and a notable resistance to corticosteroid treatment. Macrophages, as innate immune cells, play a crucial role in the pathogenesis of neutrophilic asthma. They regulate neutrophil recruitment and activation to promote the progression of airway inflammation. During this process, macrophages also undergo changes in aspects such as efferocytosis. We reviewed the recent research progresses regarding the role of macrophages in the pathogenesis of neutrophilic asthma, aiming to provide valuable insights for future studies in this area.
Humans
;
Asthma/pathology*
;
Neutrophils/pathology*
;
Macrophages/immunology*
;
Animals
;
Phagocytosis
4.Research progress on the functional polarization mechanism of myeloid-derived cells in the tumor microenvironment and their targeted therapy potential.
Chuangchuang LI ; Jingchang LI ; Xiaorui LI ; Yu SHA ; Weihong REN
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):844-850
Myeloid-derived cells (MDCs) are crucial in immune response and tissue homeostasis. They have high functional plasticity and can be polarized according to microenvironment signals. These cells, including macrophages, neutrophils, and dendritic cells (DCs), exhibit different functional polarization states in different pathological environments and are involved in the occurrence and development of diseases such as inflammation and tumors. Studies have shown that metabolic reprogramming plays a key role in the functional polarization of MDCs, affecting the cellular energy supply and regulating immune function. This paper reviews classification, function and polarization mechanism of MDCs and discusses metabolic reprogramming. In addition, the therapeutic strategies targeting MDC are summarized, which is expected to provide new targets for tumor immunotherapy.
Humans
;
Tumor Microenvironment/immunology*
;
Myeloid Cells/metabolism*
;
Neoplasms/pathology*
;
Animals
;
Immunotherapy/methods*
;
Dendritic Cells/immunology*
;
Macrophages/immunology*
5.Single-cell transcriptomic analysis reveals immune dysregula-tion and macrophage reprogramming in diabetic foot ulcers.
Chunli HUANG ; Yu JIANG ; Wei JIAO ; Ying SUI ; Chunlei WANG ; Yongtao SU
Journal of Zhejiang University. Medical sciences 2025;54(5):602-610
OBJECTIVES:
To elucidate the underlying mechanisms of macrophage-mediated inflammation and tissue injury in diabetic foot ulcer (DFU).
METHODS:
Skin tissue samples were collected from patients with DFU and with non-DFU. A total of 79 272 high-quality cell transcriptomes were obtained using single-cell RNA sequencing. An unbiased clustering approach was employed to identify cell subpopulations. Seurat functions were used to identify differentially expressed genes between DFU and non-DFU groups, and gene ontology (GO) enrichment analysis was used to reveal gene function. Furthermore, cell-cell communication network construction and ligand-receptor interaction analysis were performed to reveal the mechanisms underlying cellular interactions and signaling regulation in the DFU microenvironment from multiple perspectives.
RESULTS:
The results revealed a significant expansion of myeloid cells in DFU tissues, alongside a marked reduction in structural cells such as endothelial cells, epithelial cells, and smooth muscle cells. Major cell types underwent functional reprogramming, characterized by immune activation and impaired tissue remodeling. Specifically, macrophages in DFU skin tissues exhibited a shift toward a pro-inflammatory M1 phenotype, with upregulation of genes associated with inflammation and oxidative stress. Cell communication analysis further demonstrated that M1 macrophages served as both primary signal receivers and influencers in the COMPLEMENT pathway mediated communication network, and as key signal senders and mediators in the secreted phosphoprotein 1 (SPP1) pathway mediated communication network, actively shaping the inflammatory microenvironment. Key ligand-receptor interactions driving macrophage signaling were identified, including C3-(ITGAM+ITGB2) and SPP1-CD44.
CONCLUSIONS
This study establishes a comprehensive single-cell atlas of DFU, revealing the role of macrophage-driven cellular networks in chronic inflammation and impaired healing. These findings may offer potential novel therapeutic targets for DFU treatment.
Humans
;
Macrophages/immunology*
;
Diabetic Foot/pathology*
;
Single-Cell Analysis
;
Transcriptome
;
Gene Expression Profiling
;
Inflammation
;
Skin
;
Cell Communication
;
Signal Transduction
;
Cellular Reprogramming
6.Mechanism of Regulating MK2 to Improve Bone Marrow Inflammatory Damage after Hematopoietic Stem Cell Transplantation.
Zhao-Hui WANG ; Bo LONG ; Yu-Han WANG ; Zhi-Ting LIU ; Zi-Jie XU ; Shuang DING
Journal of Experimental Hematology 2025;33(5):1453-1460
OBJECTIVE:
To investigate the role of MK2 inhibitor MMI-0100 on inflammatory response after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and related mechanisms.
METHODS:
An allo-HSCT mouse model was established. Recipient rats were randomly divided into BMT+NaCl group and BMT+MMI-0100 group, and were injected with NaCl and MMI-0100 every day after transplantation, respectively. Samples of the two groups were collected on d 7 and 14, femur paraffin sections were stained with HE, and pathological changes in the bone marrow cavity were observed under the light microscope. The gene and protein expression levels of pro-inflammatory cytokines IL-1β and IL-18 were detected by qPCR and Western blot. Macrophage typing was detected by flow cytometry. The expression levels of NLRP3 and Caspase-1 were detected by Western blot.
RESULTS:
Inflammatory cell infiltration in the bone marrow cavity was significantly reduced in the BMT+MMI-0100 group. Western blot results showed that the protein expression levels of IL-1β and IL-18 in the BMT+MMI-0100 group were decreased compared to the BMT+NaCl group on day 7 and day 14 (all P <0.01). The qPCR results showed that compared to the BMT+NaCl group, the IL-18 gene expression levels in the BMT+MMI-0100 group were significantly reduced on day 7 and day 14 (both P <0.01). In the BMT+MMI-0100 group, the expression level of IL-1β gene decreased on day 7 (P <0.05), but increased and was higher than that in the BMT+NaCl group on day 14 (P <0.05). Flow cytometry results showed that the expression of M1 macrophages and M1/M2 ratio decreased in the BMT+MMI-0100 group compared to BMT+NaCl group (all P <0.05). Western blot results showed that the protein expression levels of NLRP3 and Caspase-1 in the BMT+MMI-0100 group were lower than those in the BMT+NaCl group (all P <0.05).
CONCLUSION
MMI-0100 can ameliorate bone marrow inflammatory injury after allo-HSCT and may act by reducing NLRP3 expression to promote M2 polarization.
Animals
;
Interleukin-1beta/metabolism*
;
Rats
;
Interleukin-18/metabolism*
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Mice
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammation
;
Bone Marrow/pathology*
;
Protein Serine-Threonine Kinases/metabolism*
;
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors*
;
Caspase 1/metabolism*
;
Macrophages
;
Transplantation, Homologous
7.Quercetin Confers Protection against Sepsis-Related Acute Respiratory Distress Syndrome by Suppressing ROS/p38 MAPK Pathway.
Wei-Chao DING ; Juan CHEN ; Quan LI ; Yi REN ; Meng-Meng WANG ; Wei ZHANG ; Xiao-Hang JI ; Xin-Yao WU ; Shi-Nan NIE ; Chang-Bao HUANG ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(11):1011-1020
OBJECTIVE:
To identify the underlying mechanism by which quercetin (Que) alleviates sepsis-related acute respiratory distress syndrome (ARDS).
METHODS:
In vivo, C57BL/6 mice were assigned to sham, cecal ligation and puncture (CLP), and CLP+Que (50 mg/kg) groups (n=15 per group) by using a random number table. The sepsisrelated ARDS mouse model was established using the CLP method. In vitro, the murine alveolar macrophages (MH-S) cells were classified into control, lipopolysaccharide (LPS), LPS+Que (10 μmol/L), and LPS+Que+acetylcysteine (NAC, 5 mmol/L) groups. The effect of Que on oxidative stress, inflammation, and apoptosis in mice lungs and MH-S cells was determined, and the mechanism with reactive oxygen species (ROS)/p38 mitogen-activated protein kinase (MAPK) pathway was also explored both in vivo and in vitro.
RESULTS:
Que alleviated lung injury in mice, as reflected by a reversal of pulmonary histopathologic changes as well as a reduction in lung wet/dry weight ratio and neutrophil infiltration (P<0.05 or P<0.01). Additionally, Que improved the survival rate and relieved gas exchange impairment in mice (P<0.01). Que treatment also remarkedly reduced malondialdehyde formation, superoxide dismutase and catalase depletion, and cell apoptosis both in vivo and in vitro (P<0.05 or P<0.01). Moreover, Que treatment diminished the release of inflammatory factors interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 both in vivo and in vitro (P<0.05 or P<0.01). Mechanistic investigation clarifified that Que administration led to a decline in the phosphorylation of p38 MAPK in addition to the suppression of ROS expression (P<0.01). Furthermore, in LPS-induced MH-S cells, ROS inhibitor NAC further inhibited ROS/p38 MAPK pathway, as well as oxidative stress, inflammation, and cell apoptosis on the basis of Que treatment (P<0.05 or P<0.01).
CONCLUSION
Que was found to exert anti-oxidative, anti-inflammatory, and anti-apoptotic effects by suppressing the ROS/p38 MAPK pathway, thereby conferring protection for mice against sepsis-related ARDS.
Animals
;
Sepsis/drug therapy*
;
Quercetin/therapeutic use*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Apoptosis/drug effects*
;
Male
;
Oxidative Stress/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Lung/drug effects*
;
Mice
;
Lipopolysaccharides
;
Macrophages, Alveolar/pathology*
;
Inflammation/pathology*
;
Protective Agents/therapeutic use*
8.Itaconic acid alleviates macrophage PANoptosis in sepsis-associated acute lung injury via inhibiting ninjurin-1-mediated plasma membrane rupture.
Mengrui CHEN ; Xiaohua TAN ; Wenjing ZHONG ; Hanxi SHA ; Liying LIANG ; Shaokun LIU
Journal of Central South University(Medical Sciences) 2025;50(6):970-985
OBJECTIVES:
Sepsis-associated acute lung injury (S-ALI) is one of the major causes of death in intensive care unit (ICU) patients, yet its mechanisms remain incompletely understood and effective therapies are lacking. Lytic cell death of macrophages is a key driver of the inflammatory cascade in S-ALI. PANoptosis, a newly recognized form of lytic cell death characterized by PANoptosome assembly and activation, involves plasma membrane rupture (PMR) mediated by ninjurin-1 (NINJ1), a recently identified pore-forming protein. Itaconic acid is known for its anti-inflammatory effects, but its role in macrophage PANoptosis during S-ALI is unclear. This study aims to investigate the protective effect of itaconic acid on macrophage PANoptosis in S-ALI to provide new therapeutic insights.
METHODS:
Male specific-pathogen-free C57BL/6J mice (6-8 weeks, 18-20 g) received intraperitoneal lipopolysaccharide (LPS) to establish a classical S-ALI model. Western blotting was used to assess PANoptosome-related proteins and enzymes involved in the itaconic acid metabolic pathway, while real-time reverse transcription polymerase chain reaction and metabolomics quantified itaconic acid levels. Primary peritoneal macrophages (PMs) were pretreated with the itaconate derivative 4-octyl itaconate (4-OI) and then exposed to tumor necrosis factor alpha (TNF-α) plus interferon gamma (IFN-γ) to induce PANoptosis. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. Western blotting was employed to quantify enzymes of the itaconate-metabolic pathway in PANoptotic macrophages, to evaluate the impact of 4-OI on PANoptosome-associated proteins, and to determine NINJ1 abundance in lung tissues from S-ALI mice and in PANoptotic macrophages. Fluorescent dye FM4-64 was used to visualize 4-OI-mediated changes in PMR, whereas immunofluorescence staining mapped the effect of 4-OI on both the expression level and membrane localization of NINJ1 in PANoptotic macrophages. The effect of 4-OI on lactate dehydrogenase (LDH) release in culture supernatants and peripheal blood serum was assessed using a LDH assay kit, and non-denataring polyacylamide gel electrophoresis was used to assess the expression of NINJ1 in S-ALI mouse lung tissues and the impact of 4-OI on the expression of PANoptosis-associated NINJ1 multimeric reflected protein in macropahges.
RESULTS:
In S-ALI mouse lungs, PANoptosome components [NOD-like receptor thermal protein domain associated protein 3 (NLRP3), Gasdermin D (GSDMD), Caspase-1, Z-DNA binding protein (ZBP1), and Caspase-3] and phosphorylated mixed lineage kinase domain-like protein (MLKL) S345 were significantly upregulated (all P<0.05), while metabolomics showed compensatory increases in itaconic acid and its key enzymes [aconitate decarboxylase 1 (ACOD1)/immunoresponsive gene 1 (IRG1)]. In macrophages, 4-OI obviously suppressed PANoptosome protein expression, reduced LDH release, restored plasma membrane integrity, and inhibited NINJ1 expression and oligomerization at the membrane (P<0.05).
CONCLUSIONS
Itaconic acid may alleviate macrophage PANoptosis in S-ALI by inhibiting NINJ1-mediated plasma membrane rupture. Targeting NINJ1 or enhancing itaconate pathways may offer a novel therapeutic strategy for S-ALI.
Animals
;
Acute Lung Injury/pathology*
;
Succinates/pharmacology*
;
Sepsis/complications*
;
Mice, Inbred C57BL
;
Male
;
Mice
;
Macrophages/pathology*
;
Cell Membrane/metabolism*
;
Lipopolysaccharides
;
Hydro-Lyases
9.Effects of liver fibrosis induced by iron overload on M2 polarization of macrophages in mice.
Jiawen YU ; Yi ZHOU ; Chunmei QIAN ; Lan MU ; Renye QUE
Journal of Southern Medical University 2025;45(4):684-691
OBJECTIVES:
To observe the evolution of intrahepatic macrophage polarization in mice with liver fibrosis induced by iron overload.
METHODS:
Thirty-two C57BL/6 mice (6-8 weeks) were randomized into control group (n=8) and liver fibrosis model group (n=24) induced by aidly intraperitoneal injection of iron dextran. At the 3rd, 5th, and 7th weeks of modeling, 8 mice in the model group were sacrificed for observing liver fibrosis using Masson, Sirius Red and immunohistochemical staining and detecting serum levels of ALT, AST and the levels of serum iron, ferritin, liver total Fe and ferrous Fe. iNOS+/F4/80+ cells and CD206+/F4/80+ cells were detected by double immunofluorescence assay to observe the proportion and distribution of M1 and M2 macrophages. The hepatic expressions of Arg-1, iNOS, IL-6, IL-10, and TNF‑α proteins were detected using Western blotting or ELISA, and the expression of CD206 mRNA was detected using RT-PCR.
RESULTS:
The mice in the model group showed gradual increase of fibrous tissue hyperplasia in the portal area over time, structural destruction of the hepatic lobules and formation of pseudolobules. With the passage of time during modeling, the rat models showed significantly increased hepatic expressions of α-SMA and COL-1, elevated serum levels of ALT, AST, Fe, ferritin, and increased liver total Fe and ferrous Fe levels. The expressions of M1 polarization markers IL-6, TNF‑α, and iNOS all increased with time and reached their peak levels at the 3rd week; The expressions of M2 polarization markers (IL-10 and Arg-1 proteins and CD206 mRNA) significantly increased in the 3rd week and but decreased in the 5th and 7th weeks.
CONCLUSIONS
Iron overload promotes M1 polarization of macrophages in mice. Liver fibrosis in the early stage promotes M2 polarization of macrophages but negatively regulate M2 polarization at later stages.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Iron Overload/pathology*
;
Macrophages/metabolism*
;
Male
;
Liver Cirrhosis/etiology*
;
Nitric Oxide Synthase Type II/metabolism*
;
Interleukin-10/metabolism*
;
Liver/pathology*
;
Interleukin-6/metabolism*
;
Mannose Receptor
;
Tumor Necrosis Factor-alpha/metabolism*
;
Mannose-Binding Lectins/metabolism*
;
Arginase
10.The Bed Nucleus of the Stria Terminalis-Paraventricular Nucleus of the Hypothalamus Neural Circuit Regulates Neuropathic Pain Through the Brain-Spleen Axis.
Shoumeng HAN ; Xin CHEN ; Li MA ; Xin ZENG ; Ying WANG ; Tingting XIE ; Fancan WU ; Kun SONG ; Kenji HASHIMOTO ; Hanbing WANG ; Long WANG
Neuroscience Bulletin 2025;41(12):2148-2166
Neuropathic pain is a chronic condition caused by damage or dysfunction in the nervous system. While the spleen may influence neuropathic pain, its role has been poorly understood. This study demonstrates that the spleen plays a crucial role in regulating neuropathic pain through the bed nucleus of the stria terminalis (BNST) - paraventricular nucleus of the hypothalamus (PVN) neural circuit in a chronic constriction injury (CCI) mouse model. Splenectomy, splenic denervation, or splenic sympathectomy significantly increased the mechanical withdrawal threshold (MWT) and reduced macrophage infiltration in the dorsal root ganglia (DRG) of CCI mice. Pseudorabies virus injections into the spleen revealed connections to the BNST and PVN in the brain. Chemogenetic inhibition of the BNST-PVN circuit increased macrophage infiltration in the DRG and decreased the MWT; these effects were reversed by splenectomy, splenic denervation, or sympathectomy. These findings underscore the critical role of the spleen, regulated by the BNST-PVN circuit, in neuropathic pain.
Animals
;
Neuralgia/pathology*
;
Septal Nuclei/physiopathology*
;
Male
;
Spleen/physiopathology*
;
Paraventricular Hypothalamic Nucleus/physiopathology*
;
Mice, Inbred C57BL
;
Splenectomy
;
Mice
;
Neural Pathways/physiopathology*
;
Disease Models, Animal
;
Ganglia, Spinal/physiopathology*
;
Sympathectomy
;
Macrophages

Result Analysis
Print
Save
E-mail