1.Quality Evaluation of Naomaili Granules Based on Multi-component Content Determination and Fingerprint and Screening of Its Anti-neuroinflammatory Substance Basis
Ya WANG ; Yanan KANG ; Bo LIU ; Zimo WANG ; Xuan ZHANG ; Wei LAN ; Wen ZHANG ; Lu YANG ; Yi SUN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):170-178
ObjectiveTo establish an ultra-performance liquid fingerprint and multi-components determination method for Naomaili granules. To evaluate the quality of different batches by chemometrics, and the anti-neuroinflammatory effects of water extract and main components of Naomaili granules were tested in vitro. MethodsThe similarity and common peaks of 27 batches of Naomaili granules were evaluated by using Ultra performance liquid chromatography (UPLC) fingerprint detection. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology was used to determine the content of the index components in Naomaili granules and to evaluate the quality of different batches of Naomaili granules by chemometrics. LPS-induced BV-2 cell inflammation model was used to investigate the anti-neuroinflammatory effects of the water extract and main components of Naomaili granules. ResultsThe similarity of fingerprints of 27 batches of samples was > 0.90. A total of 32 common peaks were calibrated, and 23 of them were identified and assigned. In 27 batches of Naomaili granules, the mass fractions of 14 components that were stachydrine hydrochloride, leonurine hydrochloride, calycosin-7-O-glucoside, calycosin,tanshinoneⅠ, cryptotanshinone, tanshinoneⅡA, ginsenoside Rb1, notoginsenoside R1, ginsenoside Rg1, paeoniflorin, albiflorin, lactiflorin, and salvianolic acid B were found to be 2.902-3.498, 0.233-0.343, 0.111-0.301, 0.07-0.152, 0.136-0.228, 0.195-0.390, 0.324-0.482, 1.056-1.435, 0.271-0.397, 1.318-1.649, 3.038-4.059, 2.263-3.455, 0.152-0.232, 2.931-3.991 mg∙g-1, respectively. Multivariate statistical analysis showed that paeoniflorin, ginsenoside Rg1, ginsenoside Rb1 and staphylline hydrochloride were quality difference markers to control the stability of the preparation. The results of bioactive experiment showed that the water extract of Naomaili granules and the eight main components with high content in the prescription had a dose-dependent inhibitory effect on the release of NO in the cell supernatant. Among them, salvianolic acid B and ginsenoside Rb1 had strong anti-inflammatory activity, with IC50 values of (36.11±0.15) mg∙L-1 and (27.24±0.54) mg∙L-1, respectively. ConclusionThe quality evaluation method of Naomaili granules established in this study was accurate and reproducible. Four quality difference markers were screened out, and eight key pharmacodynamic substances of Naomaili granules against neuroinflammation were screened out by in vitro cell experiments.
2.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
3.Rapid Discrimination of Processing Degree of Wine-processed Chuanxiong Rhizoma Based on Intelligent Sensory Technology and Multivariate Statistical Analysis
Xiaolong ZHANG ; Xiaoni MA ; Xinzhu WANG ; Po HU ; Yang PAN ; Tulin LU ; Guangming YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):174-182
ObjectiveTo explore the changes in color, odor and chemical components during wine-processing of Chuanxiong Rhizoma(CR), identify differential markers, and provide a basis for standardizing the process and establishing quality standards. MethodsFifteen batches of CR samples from 4 producing areas were collected. Colorimeter and electronic nose were used to detect the color changes and odor components of CR before and after wine-processing. Multivariate statistical methods including partial least squares-discriminant analysis(PLS-DA), principal component analysis(PCA), discriminant factor analysis(DFA) and Fisher discriminant analysis were applied to identify wine-processed CR at different processing stages and establish discriminant models, and differential components were screened out based on variable importance in the projection(VIP) value1. Then, high performance liquid chromatography(HPLC) was employed to detect the content changes of four components(ferulic acid, senkyunolide I, senkyunolide A and ligustilide) during the processing stages. ResultsThe differences of wine-processed CR at various stages were primarily reflected in color parameters L*(brightness value), a*(red-green value) and b*(yellow-blue value). Based on chromaticity differences, the color reference ranges were established for moderately processed CR, including L* of 46.75-48.24, a* of 5.37-6.07 and b* of 20.32-21.70. In odor analysis, DFA revealed significant differences among processing stages, and 11 odor markers were identified, with four differential markers(4-hydroxy-3-butylphthalide, isopropyl butyrate, L-limonene and 1-methoxyhexane) based on VIP values. HPLC results showed that there was no significant difference of the four components except for ligustilide in wine-processed CR at different stages. ConclusionThis study achieved rapid identification of wine-processed CR with different processing degrees by electronic sensory technology and differential component content detection, with discrimination accuracy rates of 92.4% and 93.272% for color and odor, respectively. This paper also established the reference ranges of main colorimetric parameters for wine-processed CR at different stages, and four differential components were screened out, providing a basis for standardizing the processing of wine-processed CR and establishing quality standards for this decoction pieces.
4.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
5.Rapid Discrimination of Processing Degree of Wine-processed Chuanxiong Rhizoma Based on Intelligent Sensory Technology and Multivariate Statistical Analysis
Xiaolong ZHANG ; Xiaoni MA ; Xinzhu WANG ; Po HU ; Yang PAN ; Tulin LU ; Guangming YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):174-182
ObjectiveTo explore the changes in color, odor and chemical components during wine-processing of Chuanxiong Rhizoma(CR), identify differential markers, and provide a basis for standardizing the process and establishing quality standards. MethodsFifteen batches of CR samples from 4 producing areas were collected. Colorimeter and electronic nose were used to detect the color changes and odor components of CR before and after wine-processing. Multivariate statistical methods including partial least squares-discriminant analysis(PLS-DA), principal component analysis(PCA), discriminant factor analysis(DFA) and Fisher discriminant analysis were applied to identify wine-processed CR at different processing stages and establish discriminant models, and differential components were screened out based on variable importance in the projection(VIP) value1. Then, high performance liquid chromatography(HPLC) was employed to detect the content changes of four components(ferulic acid, senkyunolide I, senkyunolide A and ligustilide) during the processing stages. ResultsThe differences of wine-processed CR at various stages were primarily reflected in color parameters L*(brightness value), a*(red-green value) and b*(yellow-blue value). Based on chromaticity differences, the color reference ranges were established for moderately processed CR, including L* of 46.75-48.24, a* of 5.37-6.07 and b* of 20.32-21.70. In odor analysis, DFA revealed significant differences among processing stages, and 11 odor markers were identified, with four differential markers(4-hydroxy-3-butylphthalide, isopropyl butyrate, L-limonene and 1-methoxyhexane) based on VIP values. HPLC results showed that there was no significant difference of the four components except for ligustilide in wine-processed CR at different stages. ConclusionThis study achieved rapid identification of wine-processed CR with different processing degrees by electronic sensory technology and differential component content detection, with discrimination accuracy rates of 92.4% and 93.272% for color and odor, respectively. This paper also established the reference ranges of main colorimetric parameters for wine-processed CR at different stages, and four differential components were screened out, providing a basis for standardizing the processing of wine-processed CR and establishing quality standards for this decoction pieces.
6.Textual Research on Key Information and Modern Clinical Application of Classical Famous Formula Liumotang
Xinyu ZHANG ; Chong LI ; Yixuan HU ; Luming LIANG ; Ye ZHAO ; Xiaoting LU ; Yu WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):201-212
Liumotang comes from the Yuan dynasty's Effective Prescription Handed Down for Generations of Physicians. It is composed of six medicinal materials: Arecae Semen, Aquilariae Lignum Resinatum, Aucklandiae Radix, Linderae Radix, Rhei Radix et Rhizoma, and Aurantii Fructus. It is a classical formula for treating abdominal pain due to Qi stagnation and constipation accompanied by heat. This study systematically collated the records of Liumotang in ancient medical books and modern clinical literature and conducted in-depth analysis and textual research on its formula source, main diseases, composition, dosage, medical books, container capacity, processing, preparation method, usage, drug basis, formula meaning, and other key information, so as to provide a powerful reference for the development and clinical application of compound preparations of the classical formula Liumotang. The results show that Liumotang was first seen in Effective Prescription Handed Down for Generations of Physicians, and many medical books of the past dynasties have imitated this. In terms of drug basis, the dried and mature seeds of the palm plant Areca catechu, resin-containing wood of the Daphneaceae plant Aquilaria sinensis, the dried roots of the Asteraceae plant woody Aucklandia lappa, the dried tuber root of the Lauraceae plant Lindera aggregata, the dried roots and rhizomes of the knotweed plant, R. palmatum, R.tangutikum, and R. officinale, and the dried and unripe fruits of the citrus genus C. aurantium and its cultivated varieties from the family Rutaceae were selected. In terms of dosage, through the textual research on bowls in the Ming and Qing dynasties, combined with the conversion of medicines and bowl capacity in the Qing dynasty, it was estimated that the dosage of each drug in the Yuan dynasty was 10.86 g. In the Ming and Qing dynasties, the dosage of drugs was mostly equal, but the dosage of drugs was somewhat different. In terms of processing, preparation method, and usage, in the medical books of the past dynasties, the processing of drugs has slightly changed, but raw drugs are used in all preparations. The preparation method and usage did not change much during the Yuan, Ming, and Qing dynasties, except for certain differences in dosage. In terms of syndrome, Liumotang was first used to treat abdominal pain due to Qi stagnation and constipation accompanied by heat. Medical books of the past dynasties often omit the symptoms of heat. In modern clinical practice, Liumotang is mainly used in the digestive system and urinary system diseases and is mostly used to treat constipation-predominant irritable bowel syndrome, biliary reflux gastritis, functional constipation, slow transit constipation, and other diseases, with no adverse reactions found yet. The above results provide a reliable scientific basis for the development and clinical treatment of Liumotang compound preparations.
7.Wendantang Regulates Energy Metabolism in Treatment of Myocardial Ischemia via SIRT3/PGC-1α Pathway
Xinjun ZHANG ; Zhiqiang XIAO ; Jia LU ; Wenliang DUN ; Ning GU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):1-8
ObjectiveTo investigate the mechanism by which Wendantang regulates the silent information regulator 3 (SIRT3)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) pathway to influence energy metabolism and thereby prevent and treat myocardial ischemia (MI) in a rat model of hyperlipidemia (HL). MethodsThirty SD rats were randomly assigned into five groups: control, model, low-dose (3.702 g·kg-1·d-1) Wendantang, high-dose (7.404 g·kg-1·d-1) Wendantang, and positive control (trimetazidine, 0.006 g·kg-1·d-1), with six rats in each group. The control group was fed normally, while the other groups were fed with a high-fat diet for six weeks for the modeling of HL. Subsequently, the drug intervention groups were administrated with corresponding drugs by gavage, and the control and model groups received an equivalent volume of normal saline for 14 days. One hour after the last gavage, the other groups except the control group were injected intraperitoneally with posterior pituitary hormone (30 U·kg-1) to induce MI. Electrocardiography (ECG) was employed to detect changes in the electrocardiogram. Hematoxylin-eosin staining was performed to observe cardiac pathological changes. Enzyme-linked immunosorbent assay was employed to measure the serum levels of cardiac troponin I(cTnI), myoglobin (MYO), and creatine kinase-MB (CK-MB). Colorimetry was used to determine the levels of total cholesterol (TC) and triglycerides (TG) in the serum and ATP, malondialdehyde (MDA), and superoxide dismutase (SOD) in the myocardial tissue. Western blot was employed to determine the protein levels of SIRT3, PGC-1α, adenosine monophosphate-activated protein kinase (AMPK), and phosphorylated AMPK (p-AMPK) in the myocardial tissue. Real-time PCR was employed to measure the mRNA levels of SIRT3, PGC-1α, and AMPKα in the myocardial tissue. ResultsCompared with the control group, the model group showed significant J-point deviation and elevation in the ECG image, increased heart rate, disarrangement of myocardial fibers with unclear boundaries, elevated levels of CK-MB, cTnI, MYO, TC, and TG (P<0.05, P<0.01), declined levels of SOD and ATP (P<0.01), down-regulated mRNA levels of SIRT3, PGC-1α, and AMPK (P<0.05), and down-regulated protein levels of SIRT3, PGC-1α, and p-AMPK (P<0.05). Compared with the model group, the low-dose and high-dose Wendantang groups and the trimetazidine group showed inhibited J-point deviation and elevation in the ECG image, slowed heart rate, reduced inflammatory cell infiltration, alleviated disarrangement of myocardial fibers, declined levels of CK-MB, cTnI, MYO, TC, and TG (P<0.05, P<0.01), elevated level of SOD (P<0.01), up-regulated mRNA levels of SIRT3, PGC-1α, and AMPK (P<0.05, P<0.01) and up-regulated protein levels of SIRT3, PGC-1α, and p-AMPK (P<0.05, P<0.01). ConclusionWendantang can effectively intervene in HL-associated MI in rats by reducing oxidative stress in myocardial cells, alleviating lipid metabolism disorders, and improving myocardial energy metabolism via the SIRT3/PGC-1α signaling pathway.
8.Effect of Wulao Qisun Prescription on Proliferation and Osteogenic Differentiation of AS Fibroblasts by Regulating Wnt/β-catenin Signaling Pathway
Juanjuan YANG ; Ping CHEN ; Haidong WANG ; Zhendong WANG ; Haolin LI ; Zhimin ZHANG ; Yuping YANG ; Weigang CHENG ; Jin SU ; Jingjing SONG ; Dongsheng LU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):67-73
ObjectiveTo investigate the effect and underlying mechanism of the Wulao Qisun prescription on pathological new bone formation in ankylosing spondylitis (AS). MethodsSynovial fibroblasts were isolated from the hip joints of AS patients and observed under a microscope to assess cell morphology. The cells were identified using immunofluorescence staining. The isolated AS fibroblasts were divided into blank group, low drug-containing serum group, medium drug-containing serum group, high drug-containing serum group, and positive drug group. After drug intervention, cell proliferation was measured using the cell counting kit-8 (CCK-8) assay to observe fibroblast growth and determine the optimal intervention time. Alkaline phosphatase (ALP) activity was measured using the alkaline phosphatase assay. Protein expression of osteocalcin (OCN), osteopontin (OPN), and runt-related transcription factor 2 (Runx2) was detected by Western blot. The mRNA expression levels of Wnt5a, β-catenin, and Dickkopf-1 (DKK-1) were measured by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the blank group, each drug-containing serum group of Wulao Qisun prescription and the positive drug group inhibited the proliferation of AS fibroblasts and reduced ALP expression (P<0.01). Compared with the blank group, the low drug-containing serum group of Wulao Qisun prescription downregulated β-catenin mRNA expression (P<0.05). The medium and high drug-containing serum groups and the positive drug group significantly downregulated Wnt5a and β-catenin mRNA expression (P<0.05, P<0.01), with the positive drug group showing the most pronounced effect (P<0.01). The high drug-containing serum group and the positive drug group significantly upregulated DKK-1 mRNA expression (P<0.01). Compared with the blank group, the low drug-containing serum group of Wulao Qisun prescription inhibited the expression of OPN and Runx2 proteins (P<0.05, P<0.01), while the medium and high drug-containing serum groups and the positive drug group inhibited the expression of OCN, OPN, and Runx2 proteins (P<0.05, P<0.01). ConclusionThe Wulao Qisun prescription can inhibit the proliferation and osteogenic differentiation of AS fibroblasts, thereby delaying the formation of pathological new bone in AS. The possible mechanism involves the regulation of Wnt/β-catenin-related gene expression, further inhibiting the transcription of downstream target genes.
9.Herbal Textual Research on Arcae Concha in Famous Classical Formulas
Yiqin ZHANG ; Yixue ZHUANG ; Yinan LU ; Yanning CHEN ; Yichong CHEN ; Shuiyu XU ; Zhilai ZHAN ; Chengzi YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):208-218
In this paper, the name, origin, producing area, harvesting, processing and functional indications of Arcae Concha were systematically combed and verified by consulting the ancient and modern literature, in order to provide a basis for the development of famous classical formulas containing Arcae Concha. Arcae Concha was first recorded in the name of Han in Bencao Shiyi, but later, due to the influence of LI Shizhen's error of combining Han item with Kuiha in the Ming dynasty, there were aliases such as Kuilu and Fulao, and Yizong Bidu began to include Walengzi as its correct name and has been used ever since. The textual descriptions and illustrations of the medicinal materials of Arcae Concha contained in the materia medica of the past generations were consistent with the modern Arca inflata, A. subcrenata and A. granosa. In ancient times, there were medicinal records of two parts of shell and meat, but now the shell is used as medicine, and the meat is mostly edible. In ancient times, Zhejiang, Shandong, Guangdong and Guangxi were the main producing areas, and Zhejiang was the best. It is now believed that A. inflata is mostly distributed in the northern part of the Huanghai Sea, A. granosa is mostly distributed in the coastal areas south of Shandong Peninsula in China, and A. subcrenata is widely distributed in the coastal areas of China. Its quality is better in a complete, white, no residual meat and sand. In ancient times, there was no clear harvesting period, and the processing was mainly based on vinegar quenching after calcination or powdering of calcined shell, but now the harvesting period is autumn and winter. After harvesting, it is directly washed and crushed for raw use or processed by calcined method. The records of the medicinal materials in the past dynasties on the properties of Arcae Concha were mainly warm, sweet, salty and mild, and it is now believed that Arcae Concha is salty in taste and mild in nature. In ancient times, it was believed that Arcae Concha were mainly used for coldness in the heart and abdomen, coldness in the waist and spine, benefiting the five internal organs, strengthening the stomach. Nowadays, it is believed that Arcae Concha can eliminate phlegm and remove blood stasis, soften the hardness and dissipate the lumps, produce acid and relieve pain. It can be used in the treatment of stubborn phlegm, gall tumor, scrofula and other symptoms. In conclusion, it is suggested that for the famous classical formulas containing Arcae Concha, the corresponding methods should be selected according to the processing requirements of the drug in the formulas, while those without processing requirements can be determined according to the functional position of the products.
10.Active Components of Salviae Miltiorrhizae Radix et Rhizoma and Its Compound in Treatment of Nervous System Diseases: A Review
Weining SONG ; Shuxiang ZHANG ; Fang LU ; Zhize WANG ; Ruyang CHENG ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):303-313
Nervous system diseases, also known as neuropathies, encompass a wide range of conditions, primarily including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and other neurodegenerative disorders, as well as depression, subarachnoid hemorrhage, cerebral ischemia-reperfusion injury, vascular dementia, and other neurological diseases. These diseases pose serious threats to the health and lives of patients, bringing heavy burdens to society and families. The pathogenesis of nervous system diseases is highly complex, involving mechanisms such as neuroinflammation, oxidative stress, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, brain-derived neurotrophic factor deficiency, reduced cholinergic activity, axonal injury, and demyelination. In recent years, the incidence and mortality of nervous system diseases have been rising annually. Currently, western medicine primarily focuses on symptomatic treatment, often accompanied by many adverse reactions, including lethargy, excessive sedation, dizziness, headaches, tachycardia, liver function damage, metabolic disorders, and incomplete recovery after surgery. As a traditional Chinese medicine, Salviae Miltiorrhizae Radix et Rhizoma has effects such as promoting blood circulation, removing blood stasis, cooling the blood, clearing the heart, nourishing the blood, and calming the nerves. It can play a role in the treatment and protection against nervous system diseases through multiple targets, pathways, and mechanisms. Studies have found that the water-soluble phenolic acids and fat-soluble diterpenoid quinones in Salviae Miltiorrhizae Radix et Rhizoma are the main active ingredients for the treatment of nervous system diseases. This paper summarized the effects of the active components and compounds of Salviae Miltiorrhizae Radix et Rhizoma on nervous system diseases over the past ten years, aiming to provide a theoretical basis and research ideas for the development and application of active components and compounds of Salviae Miltiorrhizae Radix et Rhizoma in nervous system diseases.

Result Analysis
Print
Save
E-mail