1.Prediction of Protein Thermodynamic Stability Based on Artificial Intelligence
Lin-Jie TAO ; Fan-Ding XU ; Yu GUO ; Jian-Gang LONG ; Zhuo-Yang LU
Progress in Biochemistry and Biophysics 2025;52(8):1972-1985
In recent years, the application of artificial intelligence (AI) in the field of biology has witnessed remarkable advancements. Among these, the most notable achievements have emerged in the domain of protein structure prediction and design, with AlphaFold and related innovations earning the 2024 Nobel Prize in Chemistry. These breakthroughs have transformed our ability to understand protein folding and molecular interactions, marking a pivotal milestone in computational biology. Looking ahead, it is foreseeable that the accurate prediction of various physicochemical properties of proteins—beyond static structure—will become the next critical frontier in this rapidly evolving field. One of the most important protein properties is thermodynamic stability, which refers to a protein’s ability to maintain its native conformation under physiological or stress conditions. Accurate prediction of protein stability, especially upon single-point mutations, plays a vital role in numerous scientific and industrial domains. These include understanding the molecular basis of disease, rational drug design, development of therapeutic proteins, design of more robust industrial enzymes, and engineering of biosensors. Consequently, the ability to reliably forecast the stability changes caused by mutations has broad and transformative implications across biomedical and biotechnological applications. Historically, protein stability was assessed via experimental methods such as differential scanning calorimetry (DSC) and circular dichroism (CD), which, while precise, are time-consuming and resource-intensive. This prompted the development of computational approaches, including empirical energy functions and physics-based simulations. However, these traditional models often fall short in capturing the complex, high-dimensional nature of protein conformational landscapes and mutational effects. Recent advances in machine learning (ML) have significantly improved predictive performance in this area. Early ML models used handcrafted features derived from sequence and structure, whereas modern deep learning models leverage massive datasets and learn representations directly from data. Deep neural networks (DNNs), graph neural networks (GNNs), and attention-based architectures such as transformers have shown particular promise. GNNs, in particular, excel at modeling spatial and topological relationships in molecular structures, making them well-suited for protein modeling tasks. Furthermore, attention mechanisms enable models to dynamically weigh the contribution of specific residues or regions, capturing long-range interactions and allosteric effects. Nevertheless, several key challenges remain. These include the imbalance and scarcity of high-quality experimental datasets, particularly for rare or functionally significant mutations, which can lead to biased or overfitted models. Additionally, the inherently dynamic nature of proteins—their conformational flexibility and context-dependent behavior—is difficult to encode in static structural representations. Current models often rely on a single structure or average conformation, which may overlook important aspects of stability modulation. Efforts are ongoing to incorporate multi-conformational ensembles, molecular dynamics simulations, and physics-informed learning frameworks into predictive models. This paper presents a comprehensive review of the evolution of protein thermodynamic stability prediction techniques, with emphasis on the recent progress enabled by machine learning. It highlights representative datasets, modeling strategies, evaluation benchmarks, and the integration of structural and biochemical features. The aim is to provide researchers with a structured and up-to-date reference, guiding the development of more robust, generalizable, and interpretable models for predicting protein stability changes upon mutation. As the field moves forward, the synergy between data-driven AI methods and domain-specific biological knowledge will be key to unlocking deeper understanding and broader applications of protein engineering.
2.Current status of generalized pustular psoriasis: Findings from a multicenter hospital-based survey of 127 Chinese patients.
Haimeng WANG ; Jiaming XU ; Xiaoling YU ; Siyu HAO ; Xueqin CHEN ; Bin PENG ; Xiaona LI ; Ping WANG ; Chaoyang MIAO ; Jinzhu GUO ; Qingjie HU ; Zhonglan SU ; Sheng WANG ; Chen YU ; Qingmiao SUN ; Minkuo ZHANG ; Bin YANG ; Yuzhen LI ; Zhiqiang SONG ; Songmei GENG ; Aijun CHEN ; Zigang XU ; Chunlei ZHANG ; Qianjin LU ; Yan LU ; Xian JIANG ; Gang WANG ; Hong FANG ; Qing SUN ; Jie LIU ; Hongzhong JIN
Chinese Medical Journal 2025;138(8):953-961
BACKGROUND:
Generalized pustular psoriasis (GPP), a rare and recurrent autoinflammatory disease, imposes a substantial burden on patients and society. Awareness of GPP in China remains limited.
METHODS:
This cross-sectional survey, conducted between September 2021 and May 2023 across 14 hospitals in China, included GPP patients of all ages and disease phases. Data collected encompassed demographics, clinical characteristics, economic impact, disease severity, quality of life, and treatment-related complications. Risk factors for GPP recurrence were analyzed.
RESULTS:
Among 127 patients (female/male ratio = 1.35:1), the mean age of disease onset was 25 years (1st quartile [Q1]-3rd quartile [Q3]: 11-44 years); 29.2% had experienced GPP for more than 10 years. Recurrence occurred in 75.6% of patients, and nearly half reported no identifiable triggers. Younger age at disease onset ( P = 0.021) and transitioning to plaque psoriasis ( P = 0.022) were associated with higher recurrence rates. The median diagnostic delay was 8 months (Q1-Q3: 2-41 months), and 32.3% of patients reported misdiagnoses. Comorbidities were present in 53.5% of patients, whereas 51.1% experienced systemic complications during treatment. Depression and anxiety affected 84.5% and 95.6% of patients, respectively. During GPP flares, the median Dermatology Life Quality Index score was 19.0 (Q1-Q3: 13.0-23.5). This score showed significant differences between patients with and without systemic symptoms; it demonstrated correlations with both depression and anxiety scores. Treatment costs caused financial hardship in 55.9% of patients, underscoring the burden associated with GPP.
CONCLUSIONS
The substantial disease and economic burdens among Chinese GPP patients warrant increased attention. Patients with early onset disease and those transitioning to plaque psoriasis require targeted interventions to mitigate the high recurrence risk.
Humans
;
Male
;
Female
;
Psoriasis/pathology*
;
Adult
;
Cross-Sectional Studies
;
Adolescent
;
Child
;
Young Adult
;
Quality of Life
;
Middle Aged
;
China/epidemiology*
;
Recurrence
;
Risk Factors
;
Surveys and Questionnaires
;
East Asian People
3.Research progress in effect of traditional Chinese medicine on aerobic glycolysis in colorectal cancer.
Xu MA ; Sheng-Long LI ; Guang-Rong ZHENG ; Da-Cheng TIAN ; Gang-Gang LU ; Jie GAO ; Yu-Qi AN ; Li-Yuan CAO ; Liang LI ; Xiao-Yong TANG
China Journal of Chinese Materia Medica 2025;50(6):1496-1506
Colorectal cancer(CRC) is a common malignant tumor worldwide. Due to the treatment intolerance and side effects, CRC rank the top among various cancers regarding the incidence and mortality rates. Therefore, exploring new therapies is of great significance for the treatment of CRC. Aerobic glycolysis(AEG) plays an important role in the microenvironment formation, proliferation, metastasis, and recurrence of CRC and other tumor cells. It has been confirmed that intervening in the AEG pathway can effectively curb CRC. The active ingredients and compound prescriptions of traditional Chinese medicine(TCM) can effectively inhibit the proliferation, metastasis, and drug resistance and regulate the apoptosis of tumor cells by modulating AEG-associated transport proteins [eg, glucose transporters(GLUT)], key enzymes [hexokinase(HK) and phosphofructokinase(PFK)], key genes [hypoxia-inducible factor 1(HIF-1) and oncogene(c-Myc)], and signaling pathways(MET/PI3K/Akt/mTOR). Accordingly, they can treat CRC, reduce the recurrence, and improve the prognosis of CRC. Although AEG plays a key role in the development and progression of CRC, the specific mechanisms are not yet fully understood. Therefore, this article delves into the intrinsic connection of the targets and mechanisms of the AEG pathway with CRC from the perspective of tumor cell glycolysis and explores how active ingredients(oxymatrine, kaempferol, and dioscin) and compound prescriptions(Quxie Capsules, Jiedu Sangen Decoction, and Xianlian Jiedu Prescription) of TCM treat CRC by intervening in the AEG pathway. Additionally, this article explores the shortcomings in the current research, aiming to provide reliable targets and a theoretical basis for treating CRC with TCM.
Humans
;
Colorectal Neoplasms/genetics*
;
Drugs, Chinese Herbal/therapeutic use*
;
Glycolysis/drug effects*
;
Animals
;
Medicine, Chinese Traditional
;
Signal Transduction/drug effects*
4.Effects and mechanisms of total flavones of Abelmoschus manihot combined with empagliflozin in attenuating diabetic tubulopathy through multiple targets based on mitochondrial homeostasis and ZBP1-mediated PANoptosis.
Si-Yu CHA ; Meng WANG ; Yi-Gang WAN ; Si-Ping DING ; Yu WANG ; Shi-Yu SHEN ; Wei WU ; Ying-Lu LIU ; Qi-Jun FANG ; Yue TU ; Hai-Tao TANG
China Journal of Chinese Materia Medica 2025;50(13):3738-3753
This study aimed to explore the mechanisms and molecular targets of total flavones of Abelmoschus manihot(TFA) plus empagliflozin(EM) in attenuating diabetic tubulopathy(DT) by targeting mitochondrial homeostasis and pyroptosis-apoptosis-necroptosis(PANoptosis). In the in vivo study, the authors established the DT rat models through a combination of uninephrectomy, administration of streptozotocin via intraperitoneal injections, and exposure to a high-fat diet. Following modeling successfully, the DT rat models received either TFA, EM, TFA+EM, or saline(as a vehicle) by gavage for eight weeks, respectively. In the in vitro study, the authors subjected the NRK52E cells with or without knock-down Z-DNA binding protein 1(ZBP1) to a high-glucose(HG) environment and various treatments including TFA, EM, and TFA+EM. In the in vivo and in vitro studies, The authors investigated the relative characteristics of renal tubular injury and renal tubular epithelial cells damage induced by reactive oxygen species(ROS), analyzed the relative characteristics of renal tubular PANoptosis and ZBP1-mediatted PANoptosis in renal tubular epithelial cells, and compared the relative characteristics of the protein expression levels of marked molecules of mitochondrial fission in the kidneys and mitochondrial homeostasis in renal tubular epithelial cells, respectively. Furthermore, in the network pharmacology study, the authors predicted and screened targets of TFA and EM using HERB and SwissTargetPrediction databases; The screened chemical constituents and targets of TFA and EM were constructed the relative network using Cytoscape 3.7.2 network graphics software; The relative targets of DT were integrated using OMIM and GeneCards databases; The intersecting targets of TFA, EM, and DT were enriched and analyzed signaling pathways by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG) software using DAVID database. In vivo study results showed that TFA+EM could improve renal tubular injury, the protein expression levels and characteristics of key signaling molecules in PANoptosis pathway in the kidneys, and the protein expression levels of marked molecules of mitochondrial fission in the kidneys. And that, the ameliorative effects in vivo of TFA+EM were both superior to TFA or EM. Network pharmacology study results showed that TFA+EM treated DT by regulating the PANoptosis signaling pathway. In vitro study results showed that TFA+EM could improve ROS-induced cell injury, ZBP1-mediatted PANoptosis, and mitochondrial homeostasis in renal tubular epithelial cells under a state of HG, including the protein expression levels of marked molecules of mitochondrial fission, mitochondrial ultrastructure, and membrane potential level. And that, the ameliorative effects in vitro of TFA+EM were both superior to TFA or EM. More importantly, using the NRK52E cells with knock-down ZBP1, the authors found that, indeed, ZBP1 was mediated PANoptosis in renal tubular epithelial cells as an upstream factor. In addition, TFA+EM could regulate the protein expression levels of marked signaling molecules of PANoptosis by targeting ZBP1. In summary, this study clarified that TFA+EM, different from TFA or EM, could attenuate DT with multiple targets by ameliorating mitochondrial homeostasis and inhibiting ZBP1-mediated PANoptosis. These findings provide the clear pharmacological evidence for the clinical treatment of DT with a novel strategy of TFA+EM, which is named "coordinated traditional Chinese and western medicine".
Animals
;
Rats
;
Mitochondria/metabolism*
;
Benzhydryl Compounds/administration & dosage*
;
Glucosides/administration & dosage*
;
Abelmoschus/chemistry*
;
Male
;
Homeostasis/drug effects*
;
Flavones/administration & dosage*
;
Rats, Sprague-Dawley
;
Diabetic Nephropathies/physiopathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
DNA-Binding Proteins/genetics*
;
Humans
;
Apoptosis/drug effects*
5.Percutaneous endoscopic discectomy with lateral approach and dual-channel method for the treatment of highly free lumbar disc herniation.
Qi-Ming CHEN ; Chun-Hua YU ; Gang CHEN ; Han-Rong XU ; Yi-Biao JING ; Yin-Jiang LU ; Shan-Chun TAO ; Jian-Bo WU
China Journal of Orthopaedics and Traumatology 2025;38(9):924-929
OBJECTIVE:
To explore clinical efficacy of percutaneous endoscopic discectomy with a lateral approach and dual-channel method in treating highly free lumbar disc herniation(LDH).
METHODS:
A retrospective analysis was conducted on 54 patients with highly free LDH who were treated with spinal endoscopic techniques from January 2021 to December 2022. Twenty-seven patients were treated with lateral approach dual-channel(lateral approach dual-channel group), including 16 males and 11 females, with an average age of (54.6±10.5) years old. Twenty-seven patients were treated with unilateral biportal endoscopic (UBE group), including 17 males and 10 females, with an average age of (52.9±12.3) years old. The number of intraoperative fluoroscopy, operation time and hospital stay, as well as visual analogue scale (VAS) and Oswestry diability index (ODI) of low back and leg pain between two patients before operation, 1 day, 1, 3, and 12 months after operation, and the efficacy was evaluated by the modified MacNab criteria at 12 mohths after operation.
RESULTS:
All patients were successfully completed surgical and were followed up, the time raged from 12 to 22 months with an average of (13.57±4.12) months. There was no statistically significant difference in operation time between two groups (P>0.05). The hospital stay of lateral approach dual-channel group was (3.9±1.1) days, which was shorter than that of UBE group (6.5±1.4) days, the number of intraoperative fluoroscopy in lateral approach dual-channel group was (12.7±2.1) times, which was more than that in UBE group (6.6±1.3) times, the differences were statistically significant (t=5.197, -7.532;P<0.05). VAS and ODI for low back pain at 1 day and 1 month after operation, and VAS for leg pain at 1 day after operation of lateral approach dual-channel group were superior to those of UBE group, and the differences were statistically significant (P<0.05). However, there were no statistically significant differences in VAS and ODI for low back and leg pain between two groups before operation and 3 and 12 months after operation (P>0.05). VAS and ODI of low back and leg pain were significantly improved at each time point before and after operation in both groups, and the difference were statistically significant (P<0.05). At 12 months after operation, according to the modified MacNab criteria, the excellent and good rates of therapeutic effects between lateral approach dual-channel group and UBE group were 92.6% (25/27) and 88.9% (24/27), respectively, and the difference was not statistically significant (χ2=0.22, P>0.05).
CONCLUSION
For patients with highly free lumbar intervertebral disc protrusion, both of lateral approach dual-channel method and UBE endoscopic surgery are safe and effective. Endoscopic surgery with lateral approach and dual-channel method could be performed under local anesthesia, allowing for the removal of the nucleus pulposus under direct vision. It is simpler, more efficient.
Humans
;
Male
;
Female
;
Intervertebral Disc Displacement/surgery*
;
Middle Aged
;
Diskectomy, Percutaneous/methods*
;
Lumbar Vertebrae/surgery*
;
Endoscopy/methods*
;
Adult
;
Retrospective Studies
;
Aged
6.Qishen Granules Modulate Metabolism Flexibility Against Myocardial Infarction via HIF-1 α-Dependent Mechanisms in Rats.
Xiao-Qian SUN ; Xuan LI ; Yan-Qin LI ; Xiang-Yu LU ; Xiang-Ning LIU ; Ling-Wen CUI ; Gang WANG ; Man ZHANG ; Chun LI ; Wei WANG
Chinese journal of integrative medicine 2025;31(3):215-227
OBJECTIVE:
To assess the cardioprotective effect and impact of Qishen Granules (QSG) on different ischemic areas of the myocardium in heart failure (HF) rats by evaluating its metabolic pattern, substrate utilization, and mechanistic modulation.
METHODS:
In vivo, echocardiography and histology were used to assess rat cardiac function; positron emission tomography was performed to assess the abundance of glucose metabolism in the ischemic border and remote areas of the heart; fatty acid metabolism and ATP production levels were assessed by hematologic and biochemical analyses. The above experiments evaluated the cardioprotective effect of QSG on left anterior descending ligation-induced HF in rats and the mode of energy metabolism modulation. In vitro, a hypoxia-induced H9C2 model was established, mitochondrial damage was evaluated by flow cytometry, and nuclear translocation of hypoxia-inducible factor-1 α (HIF-1 α) was observed by immunofluorescence to assess the mechanism of energy metabolism regulation by QSG in hypoxic and normoxia conditions.
RESULTS:
QSG regulated the pattern of glucose and fatty acid metabolism in the border and remote areas of the heart via the HIF-1 α pathway, and improved cardiac function in HF rats. Specifically, QSG promoted HIF-1 α expression and entry into the nucleus at high levels of hypoxia (P<0.05), thereby promoting increased compensatory glucose metabolism; while reducing nuclear accumulation of HIF-1 α at relatively low levels of hypoxia (P<0.05), promoting the increased lipid metabolism.
CONCLUSIONS
QSG regulates the protein stability of HIF-1 α, thereby coordinating energy supply balance between the ischemic border and remote areas of the myocardium. This alleviates the energy metabolism disorder caused by ischemic injury.
Animals
;
Myocardial Infarction/physiopathology*
;
Male
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Rats, Sprague-Dawley
;
Glucose/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Energy Metabolism/drug effects*
;
Rats
;
Fatty Acids/metabolism*
;
Myocardium/pathology*
7.Xiangshao Granules Ameliorate Post-stroke Depression by Inhibiting Activation of Microglia and IDO1 Expression in Hippocampus and Prefrontal Cortex.
Cheng-Gang LI ; Lu-Shan XU ; Liang SUN ; Yu-Hao XU ; Xiang CAO ; Chen-Chen ZHAO ; Sheng-Nan XIA ; Qing-Xiu ZHANG ; Yun XU
Chinese journal of integrative medicine 2025;31(1):28-38
OBJECTIVE:
To investigate the therapeutic effect of Xiangshao Granules (XSG) on post-stroke depression (PSD) and explore the underlying mechanisms.
METHODS:
Forty-three C57BL/6J mice were divided into 3 groups: sham (n=15), PSD+vehicle (n=14), and PSD+XSG (n=14) groups according to a random number table. The PSD models were constructed using chronic unpredictable mild stress (CUMS) after middle cerebral artery occlusion (MCAO). The sham group only experienced the same surgical operation, but without MACO and CUMS stimulation. The XSG group received XSG (60 mg/kg per day) by gavage for 4 weeks. The mice in the sham and vehicle groups were given the same volume of 0.9% saline at the same time. The body weight and behavior tests including open field test, sucrose preference test, tail suspension test, and elevated plus-maze test, were used to validate the PSD mouse model. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining were used to evaluate the anti-inflammatory effects of XSG. The potential molecular mechanisms were explored and verified through network pharmacology analysis, Nissl staining, Western blot, ELISA, and RT-qPCR, respectively.
RESULTS:
The body weight and behavior tests showed that MCAO combined with CUMS successfully established the PSD models. XSG alleviated neuronal damage, reduced the expressions of pro-apoptotic proteins Caspase-3 and B-cell lymphoma-2 (BCL-2)-associated X (BAX), and increased the expression of anti-apoptotic protein BCL-2 in PSD mice (P<0.05 or P<0.01). XSG inhibited microglial activation and the expressions of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-1 β, and IL-6 via the toll-like receptor 4/nuclear factor kappa-B signaling pathway in PSD mice (P<0.05 or P<0.01). Furthermore, XSG decreased the expression of indoleamine 2,3-dioxygenase1 (IDO1) and increased the concentration of 5-hydroxytryptamine in PSD mice (P<0.05 or P<0.01).
CONCLUSION
XSG could reverse the anxiety/depressionlike behaviors and reduce the neuronal injury in the hippocampus and prefrontal cortex of PSD mice, which may be a potential therapeutic agent for PSD.
Animals
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism*
;
Depression/etiology*
;
Drugs, Chinese Herbal/therapeutic use*
;
Hippocampus/metabolism*
;
Male
;
Mice, Inbred C57BL
;
Prefrontal Cortex/pathology*
;
Microglia/metabolism*
;
Stroke/drug therapy*
;
Disease Models, Animal
;
Mice
;
Behavior, Animal/drug effects*
8.Zedoarondiol Inhibits Neovascularization in Atherosclerotic Plaques of ApoE-/- Mice by Reducing Platelet Exosomes-Derived MiR-let-7a.
Bei-Li XIE ; Bo-Ce SONG ; Ming-Wang LIU ; Wei WEN ; Yu-Xin YAN ; Meng-Jie GAO ; Lu-Lian JIANG ; Zhi-Die JIN ; Lin YANG ; Jian-Gang LIU ; Da-Zhuo SHI ; Fu-Hai ZHAO
Chinese journal of integrative medicine 2025;31(3):228-239
OBJECTIVE:
To investigate the effect of zedoarondiol on neovascularization of atherosclerotic (AS) plaque by exosomes experiment.
METHODS:
ApoE-/- mice were fed with high-fat diet to establish AS model and treated with high- and low-dose (10, 5 mg/kg daily) of zedoarondiol, respectively. After 14 weeks, the expressions of anti-angiogenic protein thrombospondin 1 (THBS-1) and its receptor CD36 in plaques, as well as platelet activation rate and exosome-derived miR-let-7a were detected. Then, zedoarondiol was used to intervene in platelets in vitro, and miR-let-7a was detected in platelet-derived exosomes (Pexo). Finally, human umbilical vein endothelial cells (HUVECs) were transfected with miR-let-7a mimics and treated with Pexo to observe the effect of miR-let-7a in Pexo on tube formation.
RESULTS:
Animal experiments showed that after treating with zedoarondiol, the neovascularization density in plaques of AS mice was significantly reduced, THBS-1 and CD36 increased, the platelet activation rate was markedly reduced, and the miR-let-7a level in Pexo was reduced (P<0.01). In vitro experiments, the platelet activation rate and miR-let-7a levels in Pexo were significantly reduced after zedoarondiol's intervention. Cell experiments showed that after Pexo's intervention, the tube length increased, and the transfection of miR-let-7a minics further increased the tube length of cells, while reducing the expressions of THBS-1 and CD36.
CONCLUSION
Zedoarondiol has the effect of inhibiting neovascularization within plaque in AS mice, and its mechanism may be potentially related to inhibiting platelet activation and reducing the Pexo-derived miRNA-let-7a level.
Animals
;
MicroRNAs/genetics*
;
Exosomes/drug effects*
;
Plaque, Atherosclerotic/genetics*
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
Blood Platelets/drug effects*
;
Apolipoproteins E/deficiency*
;
Thrombospondin 1/metabolism*
;
CD36 Antigens/metabolism*
;
Platelet Activation/drug effects*
;
Male
;
Mice
;
Mice, Inbred C57BL
9.A minimally invasive, fast on/off "odorgenetic" method to manipulate physiology.
Yanqiong WU ; Xueqin XU ; Shanchun SU ; Zeyong YANG ; Xincai HAO ; Wei LU ; Jianghong HE ; Juntao HU ; Xiaohui LI ; Hong YU ; Xiuqin YU ; Yangqiao XIAO ; Shuangshuang LU ; Linhan WANG ; Wei TIAN ; Hongbing XIANG ; Gang CAO ; Wen Jun TU ; Changbin KE
Protein & Cell 2025;16(7):615-620
10.Gallstones, cholecystectomy, and cancer risk: an observational and Mendelian randomization study.
Yuanyue ZHU ; Linhui SHEN ; Yanan HUO ; Qin WAN ; Yingfen QIN ; Ruying HU ; Lixin SHI ; Qing SU ; Xuefeng YU ; Li YAN ; Guijun QIN ; Xulei TANG ; Gang CHEN ; Yu XU ; Tiange WANG ; Zhiyun ZHAO ; Zhengnan GAO ; Guixia WANG ; Feixia SHEN ; Xuejiang GU ; Zuojie LUO ; Li CHEN ; Qiang LI ; Zhen YE ; Yinfei ZHANG ; Chao LIU ; Youmin WANG ; Shengli WU ; Tao YANG ; Huacong DENG ; Lulu CHEN ; Tianshu ZENG ; Jiajun ZHAO ; Yiming MU ; Weiqing WANG ; Guang NING ; Jieli LU ; Min XU ; Yufang BI ; Weiguo HU
Frontiers of Medicine 2025;19(1):79-89
This study aimed to comprehensively examine the association of gallstones, cholecystectomy, and cancer risk. Multivariable logistic regressions were performed to estimate the observational associations of gallstones and cholecystectomy with cancer risk, using data from a nationwide cohort involving 239 799 participants. General and gender-specific two-sample Mendelian randomization (MR) analysis was further conducted to assess the causalities of the observed associations. Observationally, a history of gallstones without cholecystectomy was associated with a high risk of stomach cancer (adjusted odds ratio (aOR)=2.54, 95% confidence interval (CI) 1.50-4.28), liver and bile duct cancer (aOR=2.46, 95% CI 1.17-5.16), kidney cancer (aOR=2.04, 95% CI 1.05-3.94), and bladder cancer (aOR=2.23, 95% CI 1.01-5.13) in the general population, as well as cervical cancer (aOR=1.69, 95% CI 1.12-2.56) in women. Moreover, cholecystectomy was associated with high odds of stomach cancer (aOR=2.41, 95% CI 1.29-4.49), colorectal cancer (aOR=1.83, 95% CI 1.18-2.85), and cancer of liver and bile duct (aOR=2.58, 95% CI 1.11-6.02). MR analysis only supported the causal effect of gallstones on stomach, liver and bile duct, kidney, and bladder cancer. This study added evidence to the causal effect of gallstones on stomach, liver and bile duct, kidney, and bladder cancer, highlighting the importance of cancer screening in individuals with gallstones.
Humans
;
Mendelian Randomization Analysis
;
Gallstones/complications*
;
Female
;
Male
;
Cholecystectomy/statistics & numerical data*
;
Middle Aged
;
Risk Factors
;
Aged
;
Adult
;
Neoplasms/etiology*
;
Stomach Neoplasms/epidemiology*

Result Analysis
Print
Save
E-mail