1.Research Progress on Coinfection and Activation of Merkel Cell Polyomavirus in HIV/AIDS Patients
Xianfeng ZHOU ; Xiaotong QI ; Liang LU ; Yong AI ; Changhua FENG
Cancer Research on Prevention and Treatment 2025;52(4):331-336
Merkel cell polyomavirus (MCV) was named thus because it is the causative agent of Merkel cell carcinoma (MCC), with 80% of MCC cases being MCV-positive. MCV has been classified as a 2A carcinogen. It promotes carcinogenesis by integrating T antigens into the cell genome. The anti-MCV seroprevalence in the general population is as high as 90%. Usually, MCV is latent after infection in immunocompetent patients, and the incidence of MCC in immunosuppressive or defective patients, such as those with organ transplants, chronic lymphocytic leukemia, and HIV infection, is remarkably high. Patients with HIV/AIDS are a typical population with acquired immunodeficiency. At present, the research on patients with HIV/AIDS and MCV infection, activation, and pathogenesis is limited. In this paper, the progress of previous research is reviewed and the relationship between HIV infection and MCV activation is systematically investigated to provide a reference for the prevention and treatment of MCC in key populations, such as patients with HIV/AIDS.
2.Effects and mechanism of asperuloside on the pyroptosis of intestinal epithelial cells in rats with ulcerative colitis
Chao XU ; Xiaoping TAN ; Jie LI ; Minghua AI ; Yueyue LU ; Chaoyong LIU
China Pharmacy 2025;36(2):166-171
OBJECTIVE To investigate the effects and mechanism of asperuloside (Asp) on the pyroptosis of intestinal epithelial cells in rats with ulcerative colitis (UC). METHODS The male SD rats were randomly divided into Control group, model group (UC group), ASP low-dose and high-dose groups [Asp-L, Asp-H groups, Asp 35, 70 mg/(kg·d)], ASP high-dose group+AMPK inhibitor Compound C group [Asp-H+Compound C group, Asp 70 mg/(kg·d)+Compound C 0.2 mg/(kg·d)], with 12 rats in each group. Except for Control group, the other groups were injected with 50% ethanol (0.25 mL)+5% 2,4, 6- trinitrobenzene sulfonic acid solution (2 mL/kg) into the intestinal cavity to construct UC model. After modeling, the rats in each drug group were given corresponding drug solution by gavage or (and) tail vein injection, once a day, for 14 consecutive days. After the last administration, the weight of rats in each group was measured, and the length of their colons was measured; disease activity index (DAI) score and colonic mucosal damage index (CMDI) score were performed, and the serum levels of inflammatory factors (interleukin-18, -1β, -6) were detected. The pathological changes of the colon tissue were observed. The expressions of pyroptosis-related proteins [caspase-1, gasdermin D (GSDMD)] in colon tissue, and pathway-related proteins such as adenosine monophosphate-activated protein kinase (AMPK), thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3) and apoptosis-associated speck-like protein containing a CARD (ASC) were all detected. RESULTS Compared with Control group, the colon tissue structure of rats in UC group was damaged, with obvious infiltration of inflammatory cells and edema. Their body weight, colon length and phosphorylation level of AMPK protein were significantly reduced or shortened; DAI and CMDI scores, serum levels of inflammatory factors, and the protein expressions of caspase-1, GSDMD, TXNIP, NLRP3 and ASC in colon tissue were increased or upregulated significantly (P<0.05). Compared with UC group, the pathological damage of colon tissue in rats was relieved in Asp-L and Asp-H groups, and all quantitative indicators were significantly improved (P<0.05); the improvement effect of Asp-H group was more significant (P<0.05). Compound C could significantly reverse the improvement effect of high-dose of Asp on the above indicators in UC rats (P<0.05). CONCLUSIONS Asp can improve inflammatory damage in colon tissue and inhibit pyroptosis of intestinal epithelial cells in UC rats, which is associated with the activation of AMPK and inhibition of TXNIP/NLRP3 signaling pathway.
3.Effects and mechanism of asperuloside on the pyroptosis of intestinal epithelial cells in rats with ulcerative colitis
Chao XU ; Xiaoping TAN ; Jie LI ; Minghua AI ; Yueyue LU ; Chaoyong LIU
China Pharmacy 2025;36(2):166-171
OBJECTIVE To investigate the effects and mechanism of asperuloside (Asp) on the pyroptosis of intestinal epithelial cells in rats with ulcerative colitis (UC). METHODS The male SD rats were randomly divided into Control group, model group (UC group), ASP low-dose and high-dose groups [Asp-L, Asp-H groups, Asp 35, 70 mg/(kg·d)], ASP high-dose group+AMPK inhibitor Compound C group [Asp-H+Compound C group, Asp 70 mg/(kg·d)+Compound C 0.2 mg/(kg·d)], with 12 rats in each group. Except for Control group, the other groups were injected with 50% ethanol (0.25 mL)+5% 2,4, 6- trinitrobenzene sulfonic acid solution (2 mL/kg) into the intestinal cavity to construct UC model. After modeling, the rats in each drug group were given corresponding drug solution by gavage or (and) tail vein injection, once a day, for 14 consecutive days. After the last administration, the weight of rats in each group was measured, and the length of their colons was measured; disease activity index (DAI) score and colonic mucosal damage index (CMDI) score were performed, and the serum levels of inflammatory factors (interleukin-18, -1β, -6) were detected. The pathological changes of the colon tissue were observed. The expressions of pyroptosis-related proteins [caspase-1, gasdermin D (GSDMD)] in colon tissue, and pathway-related proteins such as adenosine monophosphate-activated protein kinase (AMPK), thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3) and apoptosis-associated speck-like protein containing a CARD (ASC) were all detected. RESULTS Compared with Control group, the colon tissue structure of rats in UC group was damaged, with obvious infiltration of inflammatory cells and edema. Their body weight, colon length and phosphorylation level of AMPK protein were significantly reduced or shortened; DAI and CMDI scores, serum levels of inflammatory factors, and the protein expressions of caspase-1, GSDMD, TXNIP, NLRP3 and ASC in colon tissue were increased or upregulated significantly (P<0.05). Compared with UC group, the pathological damage of colon tissue in rats was relieved in Asp-L and Asp-H groups, and all quantitative indicators were significantly improved (P<0.05); the improvement effect of Asp-H group was more significant (P<0.05). Compound C could significantly reverse the improvement effect of high-dose of Asp on the above indicators in UC rats (P<0.05). CONCLUSIONS Asp can improve inflammatory damage in colon tissue and inhibit pyroptosis of intestinal epithelial cells in UC rats, which is associated with the activation of AMPK and inhibition of TXNIP/NLRP3 signaling pathway.
4.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
5.Mechanism of electroacupuncture treating detrusor-bladder neck dyssynergia after suprasacral spinal cord injury by proteomics
Liya TANG ; Qirui QU ; Jincan LIU ; Ming XU ; Lu ZHOU ; Qiong LIU ; Kun AI
Digital Chinese Medicine 2025;8(2):267-278
Objectives:
To elucidate the potential mechanisms of electroacupuncture (EA) in restoring detrusor-bladder neck dyssynergia (DBND) following suprasacral spinal cord injury (SSCI).
Methods:
A total of 52 specific pathogen-free (SPF) grade famale Sprague-Dawley (SD) rats (10 – 12 weeks, 250 – 280 g) were randomly assigned to either a sham group (n = 12) or a spinal cord injury model group (n = 40). In the model group, DBND was induced through Hassan Shaker spinal cord transection at T10 level, with 24 rats meeting inclusion criteria and subsequently randomized into DBND group (n = 12) and EA intervention group (DBND + EA group, n = 12). After spinal shock recovery (day 19 after modeling), DBND + EA group received EA treatment at Ciliao (BL32), Zhongji (RN3), and Sanyinjiao (SP6) acupoints for 20 min per session at 10/50 Hz frequencies, once daily for 10 d. Sham and DBND groups received anesthesia only without EA intervention. On day 29 post-modeling, all rats underwent urodynamic assessments, followed by hematoxylin and eosin (HE) staining, tandem mass tag (TMT) proteomics, and Western blot (WB) analysis of detrusor and bladder neck tissues. Differentially expressed proteins (DEPs) were defined as proteins with P < 0.05, unique peptides ≥ 2, and fold change > 1.2 or < 0.83. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed using KOBAS 3.0 (P < 0.01), and protein-protein interaction (PPI) networks were analyzed using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 11.5 and Cytoscape 3.9.1.
Results:
Compared with sham group, DBND group showed significantly elevated leak point pressure (LPP) and maximum cystometric capacity (MCC) (both P < 0.01). EA treatment significantly reduced both LPP and MCC compared with DBND group (P < 0.01 and P < 0.05, respectively). HE staining revealed that EA reduced detrusor fibrosis and improved bladder neck inflammation. TMT proteomics identified 30 overlapping DEPs in detrusor and 59 overlapping DEPs in bladder neck when comparing DBND + EA/DBND groups with sham group. In detrusor tissue, KEGG analysis revealed 10 significantly enriched pathways (P < 0.01), including mitogen-activated protein kinase (MAPK) signaling pathway. PPI analysis showed 22 of 30 DEPs were interconnected. In bladder neck tissue, 14 pathways were significantly enriched (P < 0.01), including relaxin signaling pathway, with 51 of 59 DEPs showing interconnections. Both TMT and WB validations demonstrated that compared with sham controls, DBND rats exhibited upregulated collagen type IV alpha 2 chain (Col4a2) and downregulated guanine nucleotide-binding protein G(z) subunit alpha (Gnaz) in detrusor tissue, while EA treatment normalized both proteins (both P < 0.05). In bladder neck tissue, DBND rats showed decreased expression of smoothelin (Smtn) and calcium-activated potassium channel subunit beta-1 (Kcnmb1) compared with sham controls (both P < 0.01), which were both upregulated following EA treatment (P < 0.01 and P < 0.05, respectively).
Conclusion
EA restores detrusor-bladder neck coordination in DBND through dual-target mechanisms. In detrusor tissue, EA modulates contraction via extracellular matrix remodeling, cyclic adenosine monophosphate (cAMP) signaling pathway regulation, and enhanced adenosine triphosphate (ATP) biosynthesis mediated by neurotransmitters. In bladder neck tissue, EA promotes relaxation by maintaining contractile phenotypes, reducing fibrosis, suppressing smooth muscle excitation, and regulating presynaptic neurotransmitter release. These findings provide mechanistic insights into EA's therapeutic role in managing DBND.
6.Leveraging foundation and large language models in medical artificial intelligence
Nam Io WONG ; Olivia MONTEIRO ; T. Daniel BAPTISTA-HON ; Kai WANG ; Wenyang LU ; Zhuo SUN ; Sheng NIE ; Yun YIN
Chinese Medical Journal 2024;137(21):2529-2539
Recent advancements in the field of medical artificial intelligence (AI) have led to the widespread adoption of foundational and large language models. This review paper explores their applications within medical AI, introducing a novel classification framework that categorizes them as disease-specific, general-domain, and multi-modal models. The paper also addresses key challenges such as data acquisition and augmentation, including issues related to data volume, annotation, multi-modal fusion, and privacy concerns. Additionally, it discusses the evaluation, validation, limitations, and regulation of medical AI models, emphasizing their transformative potential in healthcare. The importance of continuous improvement, data security, standardized evaluations, and collaborative approaches is highlighted to ensure the responsible and effective integration of AI into clinical applications.
7.Synthesis of phenylacetamide derivatives and their protective effects on islet cell damage induced by palmitic acid
Ai-Yun LI ; Li GUAN ; Wan-Zhen SU ; Yang-Yang LU ; Sheng-Jie ZHANG ; Wei-Ze LI ; Xiang-Ying JIAO
Chinese Pharmacological Bulletin 2024;40(6):1130-1136
Aim To design and synthesize a series of phenylacetamide derivatives with different substituted phenylacetic acid as raw materials,and to investigate the protective effects of the compound on the damage of pancreatic β cells induced by palmitate acid(PA).Methods Min6 cells were cultured and divided into B blank control group,PA treatment group and PA+compounds group.The viability of Min6 cells was de-tected by CCK-8.The protein expressions of TXNIP and NLRP3 were observed by Western blot.MDA con-tent and SOD activity were detected by MDA and SOD kit.The insulin secretion of Min6 islet cells was meas-ured with insulin ELISA kit.Results A total of 10 phenylacetamide derivatives were designed and synthe-sized.Their structures were confirmed by 1H NMR and ESI-MS.Pharmacological activity study showed that most of the compounds had protective effects on islet βcells,among which LY-6 and LY-8 had stronger pro-tective effects than PA model group,with the cell via-bility of 61.4%,and LY-6 had the highest cell activi-ty,reaching to 104.9%.Compared with PA group,the protein expression of TXNIP and NLRP3 decreased in LY-6 and LY-8 groups,MDA content decreased and SOD activity increased,and insulin secretion of Min6 cell increased.Conclusions LY-6 and LY-8 inhibit TXNIP expression and decrease the activation of NL-RP3 inflammasome,and decrease the production of MDA and increase SOD activity,and thus reducing is-let β cells apoptosis and increasing insulin secretion.Therefore,the compound LY-6 could serve as a poten-tial anti-diabetic new chemical entity.
8.Ultrasonic anatomical study and clinical application of stellate ganglion block via C7 transverse process
Ai-Li HU ; Jun-Li WANG ; Xiao-Ai CHU ; Jie-Qing CHEN ; Zong-Yu ZHA ; Da-Sheng LU ; Qin-Zhong XIA
Journal of Regional Anatomy and Operative Surgery 2024;33(7):571-575
Objective To investigate the high-frequency ultrasonic anatomical features of the adjacent C7 transverse process and its clinical value in stellate ganglion block(SGB).Methods High-frequency ultrasound was applied to obtain ultrasonographic anatomical sonogram features in the plane of bilateral C7 transverse processes in 52 cases(104 sides in total)of healthy adults and then stored for the operator to learn and correctly label each tissue structure.Fifty patients who underwent ultrasound-guided SGB were selected and divided into the BC7 group(25 cases before study)and AC7 group(25 cases after study).The operation time,SGB success rate,number of adjusted needle tips,dosage of anaesthetic and adverse reaction of patients in both group were recorded.Results The main muscles observed in the C7 plane were the longissimus and anterior scalene muscles,the ultrasonographic anatomical relationships of the vagus nerve located in the carotid sheath,the pleura located posterior to the subclavian artery,and the recurrent laryngeal nerve located in the vicinity of the branches of the inferior thyroid artery are described,and the stellate ganglion was illustrated as a flattened hypoechogenic structure visible on the deep surface of the prevertebral fascia in the region of the external cervical longissimus muscle,vertebral artery and vein,and the medial aspect of the anterior oblique muscle,and emanated the sonographic features of several hypoechoic nerve bundles.Ultrasound guided SGB was completed uneventfully in patients of both groups,and all patients developed Horner syndrome,with the SGB success rate of 100%.The operation time[(5.36±1.11)minutes]of patients in the BC7 group was longer than that in the AC7 group[(3.08±0.86)minutes],the number of adjusted needle tips[(4.20±1.00)times]of patients in the BC7 group was more than that in the AC7 group[(2.24±0.87)times],and the dosage of anaesthetic[(1.82±0.28)mL]of patients in the BC7 group was more than that in the AC7 group[(1.64±0.22)mL],all the differences were statistically significant(P<0.05).There was no significant difference in the incidence of adverse reaction between the two groups(P>0.05).Conclusion After ultrasonic learning of adjacent structures through C7 transverse process,SGB is safe and easy to perform.
9.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
10.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.

Result Analysis
Print
Save
E-mail