1.Erjingwan Alleviate Inflammatory Response and Apoptosis in Skeletal Muscle Cells of Sarcopenia via SIRT1/Nrf2/HO-1 Signaling Pathway
Long SHI ; Yang LI ; Hongyu YAN ; Tianle ZHOU ; Zhiwen ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):57-66
ObjectiveTo investigate the effects of the classical Chinese medicine compound prescription Erjingwan on the inflammatory response and apoptosis of skeletal muscle cells in a mouse model of sarcopenia and decipher the mechanism based on the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. MethodsForty C57/BL6 male mice were randomized into a control group, a model group, and groups with different doses of Erjingwan (8,16,32 g·kg-1). The mouse model of sarcopenia was established by D-gal-induced skeletal muscle senescence. The body weight and grip strength of mice treated with different doses of Erjingwan were examined to evaluate their physiological functions. Hematoxylin-eosin (HE) staining and Masson staining were used to observe the pathological changes and fibrosis in the skeletal muscle of mice. Enzyme-linked immunosorbent assay (ELISA) was adopted to determine the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum samples of mice, and biochemical tests were conducted to quantify the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in the serum. The protein and mRNA levels of SIRT1, Nrf2, B-cell lymphoma (Bcl-2), and Bcl-2-associated X protein (Bax) were determined by Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), respectively. ResultsAfter 4 weeks of drug intervention, the model group exhibited significant reductions in body weight and grip strength (P0.01) compared with the control group. Compared with the model group, all doses of Erjingwan increased the body weight in mice at week 8 (P0.01) and grip strength from week 6 (P0.01). HE staining revealed clear muscle fiber structure in the control group, muscle fiber rupture and atrophy in the model group, and dose-dependent repair of muscle fiber structure in the Erjingwan groups. Masson staining showed minimal collagen fibers and mild fibrosis in the control group, collagen fiber proliferation and severe fibrosis in the model group, and collagen proliferation with dose-dependent inhibition of fibrosis in the Erjingwan groups. ELISA results showed that serum levels of TNF-α and IL-6 were elevated in the model group compared with those in the control group (P0.01). After intervention, the low-dose Erjingwan group exhibited a decreased TNF-α level (P0.05), while the medium and high-dose groups showed decreases in both TNF-α and IL-6 levels (P0.01). Biochemical assays revealed that the model group had decreased SOD and GSH levels (P0.01) and an increased MDA level (P0.01) compared with the control group. The medium and high-dose Erjingwan groups exhibited increases in SOD and GSH levels (P0.01) and decreases in MDA level (P0.01), compared with the model group. WB and Real-time PCR results showed that compared with the control group, the model group presented down-regulated protein and mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 in the muscle tissue (P0.01) and up-regulated protein and mRNA levels of Bax (P0.01). Compared with the model group, Erjingwan at different doses up-regulated the protein levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01) and down-regulated the protein and mRNA levels of Bax (P0.01) in the muscle tissue. Low-dose Erjingwan elevated the mRNA levels of Nrf2 and HO-1 (P0.05, P0.01), and medium and high-dose Erjingwan up-regulated the mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01). ConclusionErjingwan reduced the content of inflammatory factors in skeletal muscle cells, improved the antioxidant capacity, and attenuated pathological changes and fibrosis in the muscle of the mouse model of sarcopenia by regulating the SIRT1/Nrf2/HO-1 pathway, inflammatory response, and apoptosis network.
2.Erjingwan Alleviate Inflammatory Response and Apoptosis in Skeletal Muscle Cells of Sarcopenia via SIRT1/Nrf2/HO-1 Signaling Pathway
Long SHI ; Yang LI ; Hongyu YAN ; Tianle ZHOU ; Zhiwen ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):57-66
ObjectiveTo investigate the effects of the classical Chinese medicine compound prescription Erjingwan on the inflammatory response and apoptosis of skeletal muscle cells in a mouse model of sarcopenia and decipher the mechanism based on the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. MethodsForty C57/BL6 male mice were randomized into a control group, a model group, and groups with different doses of Erjingwan (8,16,32 g·kg-1). The mouse model of sarcopenia was established by D-gal-induced skeletal muscle senescence. The body weight and grip strength of mice treated with different doses of Erjingwan were examined to evaluate their physiological functions. Hematoxylin-eosin (HE) staining and Masson staining were used to observe the pathological changes and fibrosis in the skeletal muscle of mice. Enzyme-linked immunosorbent assay (ELISA) was adopted to determine the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum samples of mice, and biochemical tests were conducted to quantify the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in the serum. The protein and mRNA levels of SIRT1, Nrf2, B-cell lymphoma (Bcl-2), and Bcl-2-associated X protein (Bax) were determined by Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), respectively. ResultsAfter 4 weeks of drug intervention, the model group exhibited significant reductions in body weight and grip strength (P0.01) compared with the control group. Compared with the model group, all doses of Erjingwan increased the body weight in mice at week 8 (P0.01) and grip strength from week 6 (P0.01). HE staining revealed clear muscle fiber structure in the control group, muscle fiber rupture and atrophy in the model group, and dose-dependent repair of muscle fiber structure in the Erjingwan groups. Masson staining showed minimal collagen fibers and mild fibrosis in the control group, collagen fiber proliferation and severe fibrosis in the model group, and collagen proliferation with dose-dependent inhibition of fibrosis in the Erjingwan groups. ELISA results showed that serum levels of TNF-α and IL-6 were elevated in the model group compared with those in the control group (P0.01). After intervention, the low-dose Erjingwan group exhibited a decreased TNF-α level (P0.05), while the medium and high-dose groups showed decreases in both TNF-α and IL-6 levels (P0.01). Biochemical assays revealed that the model group had decreased SOD and GSH levels (P0.01) and an increased MDA level (P0.01) compared with the control group. The medium and high-dose Erjingwan groups exhibited increases in SOD and GSH levels (P0.01) and decreases in MDA level (P0.01), compared with the model group. WB and Real-time PCR results showed that compared with the control group, the model group presented down-regulated protein and mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 in the muscle tissue (P0.01) and up-regulated protein and mRNA levels of Bax (P0.01). Compared with the model group, Erjingwan at different doses up-regulated the protein levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01) and down-regulated the protein and mRNA levels of Bax (P0.01) in the muscle tissue. Low-dose Erjingwan elevated the mRNA levels of Nrf2 and HO-1 (P0.05, P0.01), and medium and high-dose Erjingwan up-regulated the mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01). ConclusionErjingwan reduced the content of inflammatory factors in skeletal muscle cells, improved the antioxidant capacity, and attenuated pathological changes and fibrosis in the muscle of the mouse model of sarcopenia by regulating the SIRT1/Nrf2/HO-1 pathway, inflammatory response, and apoptosis network.
3.Mechanism study of SIRT3 alleviating oxidative-stress injury in renal tubular cells by promoting mitochondrial biogenesis via regulating mitochondrial redox balance
Yaojun LIU ; Jun ZHOU ; Jing LIU ; Yunfei SHAN ; Huhai ZHANG ; Pan XIE ; Liying ZOU ; Lingyu RAN ; Huanping LONG ; Lunli XIANG ; Hong HUANG ; Hongwen ZHAO
Organ Transplantation 2026;17(1):86-94
Objective To elucidate the molecular mechanism of sirtuin-3 (SIRT3) in regulating mitochondrial biogenesis in human renal tubular epithelial cells. Methods Cells were stimulated with different concentrations of H2O2 and divided into four groups: control (NC), 50 μmol/L H2O2, 110 μmol/L H2O2 and 150 μmol/L H2O2. SIRT3 protein expression was then measured. SIRT3 was knocked down with siRNA, and cells were further assigned to five groups: control (NC), negative-control siRNA (NCsi), SIRT3-siRNA (siSIRT3), NCsi+H2O2, and siSIRT3+H2O2. After 24 h, cellular adenosine triphosphate (ATP) and mitochondrial superoxide anion (O2•−) levels were determined, together with mitochondrial expression of SIRT3, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), superoxide dismutase 2 (SOD2), acetylated-SOD2 and adenosine monophosphate activated protein kinase α1 (AMPKα1). Results The 110 and 150 μmol/L H2O2 decreased SIRT3 protein (both P<0.05). ATP and mitochondrial O2•− did not differ between NC and NCsi groups (both P>0.05). Compared to the NCsi group, the siSIRT3 group exhibited elevated O2•− level, decreased SIRT3 protein and increased expression levels of SOD2 and acetylated SOD2 protein (all P<0.05). Compared to the NCsi group, the NCsi+H2O2 group exhibited decreased cellular ATP levels, elevated mitochondrial O2•− levels, and reduced protein expression levels of SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 (all P<0.05). Compared with the siSIRT3 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 protein expression levels and a decrease in acetylated SOD2 protein expression levels (all P<0.05). Compared with the NCsi+H2O2 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, AMPKα1, PGC-1α and NRF1, TFAM protein expression levels, and an increase in SOD2 and acetylated SOD2 protein expression levels (all P<0.05). Conclusions SIRT3 promotes mitochondrial biogenesis in tubular epithelial cells via the AMPK/PGC-1α/NRF1/TFAM axis, representing a key mechanism through which SIRT3 ameliorates oxidative stress-induced mitochondrial dysfunction.
4.Updates and amendments of the Chinese Pharmacopoeia 2025 Edition (Volume Ⅰ)
LI Hao ; SHEN Mingrui ; ZHANG Pang ; ZHAI Weimin ; NI Long ; HAO Bo ; ZHAO Yuxin ; HE Yi ; MA Shuangcheng ; SHU Rong
Drug Standards of China 2025;26(1):017-022
The Chinese Pharmacopoeia is the legal technical standard which should be followed during the research, production, use, and administration of drugs. At present, the new edition of the Chinese Pharmacopoeia is planned to be promulgated and implemented. This article summarizes and analyzes the main characteristics and the content of updates and amendments of the Chinese Pharmacopoeia 2025 Edition(Volume Ⅰ), to provide a reference for the correct understanding and accurate implementation the new edition of the pharmacopoeia.
5.The level of HBV cccDNA in liver tissue and its clinical significance in patients in the convalescence stage of hepatitis B virus-related acute-on-chronic liver failure
Zhekai CAI ; Long XU ; Wenli LIU ; Yingqun XIAO ; Qingmei ZHONG ; Wei ZHANG ; Min WU
Journal of Clinical Hepatology 2025;41(1):57-62
ObjectiveTo investigate the expression level of HBV cccDNA in patients in the convalescence stage of hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) and its correlation with HBV markers and liver histopathological changes. MethodsA total of 30 patients in the convalescence stage of HBV-ACL who were hospitalized in The Ninth Hospital of Nanchang from January 2015 to October 2023 were enrolled as liver failure group, and 9 patients with chronic hepatitis B (CHB), matched for sex and age, were enrolled as control group. The content of HBV cccDNA in liver tissue was measured, and its correlation with clinical data and laboratory markers was analyzed. The independent-samples t test or the Mann-Whitney U test was used for comparison of continuous data between two groups, and a one-way analysis of variance or the Kruskal-Wallis H test was used for comparison between multiple groups; the Fisher’s exact test was used for comparison of categorical data between groups. A Spearman correlation analysis was performed. ResultsThe liver failure group had a significantly lower content of HBV cccDNA in liver tissue than the control group (-0.92±0.70 log10 copies/cell vs -0.13±0.91 log10 copies/cell, t=2.761, P=0.009). In the liver failure group, there was no significant difference in the content of HBV cccDNA in liver tissue between the HBeAg-positive patients and the HBeAg-negative patients (P>0.05); there was no significant difference in the content of HBV cccDNA in liver tissue between the patients with different grades (G0-G2, G3, and G4) of liver inflammatory activity (P>0.05); there was no significant difference in the content of HBV cccDNA in liver tissue between the patients with different stages (S0-S2, S3, and S4) of liver fibrosis (P>0.05); there was no significant difference in the content of HBV cccDNA in liver tissue between the patients with negative HBV DNA and those with positive HBV DNA (P>0.05). For the liver failure group, the content of HBV cccDNA in liver tissue was positively correlated with the content of HBV DNA in liver tissue (r=0.426, P=0.043) and was not significantly correlated with the content of HBV DNA in serum (P>0.05). ConclusionThere is a significant reduction in the content of HBV cccDNA in liver tissue in the convalescence stage of HBV-ACLF. HBV cccDNA exists continuously and stably in liver tissue and can better reflect the persistent infection and replication of HBV than HBV DNA in serum and liver tissue.
6.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
7.Study on chemical composition,pharmacodynamic consistency and mechanism between Hugan qingzhi formula decoction and its formulated granules
Zhenhua ZHANG ; Changrui LONG ; Huixing WU ; Shijian XIANG ; Benjie ZHOU
China Pharmacy 2025;36(12):1442-1448
OBJECTIVE To evaluate the contents of characteristic components in Hugan qingzhi formula (HGQZ) decoction and formulated granules and the pharmacodynamic consistency of them on high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) model mice, and explore their potential underlying mechanisms of action. METHODS Liquid chromatography-tandem mass spectrometry was used to analyze and compare the contents of six characteristic components in HGQZ decoction and formulated granules. Male C57BL/6 mice were randomly divided into normal control group, model group, HGQZ decoction low- dose and high-dose groups (13, 26 g/kg, calculated by crude drugs), and HGQZ formulated granules low-dose and high-dose groups (13, 26 g/kg, calculated by crude drugs), with 6 mice in each group. Except for the normal control group, which was fed a regular diet, the mice in the other groups were fed a high-fat diet for 20 weeks to establish the NAFLD model; at the same time, the mice in each group were gavaged with the corresponding drugs/water once. The fasting blood glucose (FBG) levels, glucose and insulin tolerance, body weight, liver index, white adipose Δ 基金项目 国家自然科学基金项目(No.82074078);广东省基础 tissue index, brown adipose tissue index, as well as lipid levels (total cholesterol, triglycerides) and liver function indicators (aspartate transaminase, alanine transaminase) were measured. Additionally, histopathological changes and lipid accumulation in liver tissues were observed. The serum samples of mice in the model group, HGQZ decoction high-dose group and HGQZ formulated granules high-dose group were taken for metabolomics analysis, and validation of the underlying mechanisms was conducted. RESULTS There were no statistically significant differences in the contents of ginsenoside Rb1, typhaneoside, isorhamnetin-3-O-neohesperidoside, hyperoside, nuciferine, and 23-acetylalismol B between HGQZ decoction and HGQZ formulated granules (P>0.05). Compared with the model group, the hepatic histopathological changes in mice were alleviated in both the HGQZ decoction group and all dose groups of HGQZ formulated granules. Inflammatory cell infiltration and lipid vacuoles were reduced. Additionally, there was a general improvement in FBG levels, glucose tolerance, insulin tolerance, body weight, liver index, white/brown adipose tissue index, lipid levels, and liver function indicators (P<0.05). However, no statistically significant differences were observed between these treatment groups (P>0.05). There were 234 and 136 differentially expressed serum metabolites identified in the model group versus HGQZ decoction high-dose group, and model group versus HGQZ formulated granules high-dose group, respectively. After taking the intersection, 65 common differentially expressed metabolites were obtained, which were enriched in metabolic pathways such as purine metabolism and tricarboxylic acid cycle metabolism. Among these, the content of citrate in the model group was significantly lower than that in both the HGQZ decoction group and HGQZ formulated granules high-dose group (P<0.05). Both high-dose HGQZ decoction and formulated granules could significantly elevate the phosphorylation levels of AMP-activated protein kinase (AMPK) (P<0.05). CONCLUSIONS HGQZ decoction and formulated granules contain comparable amounts of characteristic components, and both exhibit equivalent efficacy on NAFLD model mice. The anti-NAFLD effects of HGQZ are associated with the activation of the AMPK energy metabolism pathway.
8.Prescription investigation for potential adverse drug interactions based on pharmacokinetics of gefitinib and establishment of review rules
Jun CHENG ; Long WANG ; Fuguo SI ; Guanjun ZHANG
China Pharmacy 2025;36(12):1511-1514
OBJECTIVE To analyze the potential adverse drug interactions based on pharmacokinetics (PK-pADIs) of gefitinib, and establish its corresponding prescription review rules. METHODS Outpatient prescriptions of gefitinib combination therapy in our hospital from January 1, 2022 to November 30, 2024 were collected through rational drug software system. PK- pADIs present in the prescriptions were identified based on the Drugs.com® drug interactions database. The specific combination drugs and cases of PK-pADIs were statistically analyzed, and prescription review rules were established according to the severity classification of PK-pADIs. RESULTS & CONCLUSIONS A total of 217 prescriptions of gefitinib combination therapy were enrolled. Among them, 28 prescriptions (12.90%), involving a total of 28 patients, had 29 cases of PK-pADIs, with respiratory medicine prescriptions (22 prescriptions) being the main type. The combination drugs included proton pump inhibitors (13 cases), strong cytochrome P450 3A4 (CYP3A4) inhibitors (7 cases), H2 receptor antagonists (4 cases), CYP3A4 inducers (3 cases), and CYP2D6 substrates (2 cases). The severity classifications for these interactions were severe, moderate, severe, moderate and moderate, respectively. Based on the above severity classification of PK-pADIs, four prescription review rules had been established as follows: when gefitinib was combined with acid-suppressing drugs, it should be subject to “manual review”; when gefitinib was combined with dexamethasone, metoprolol, or strong CYP3A4 inhibitors, an “alert” should be triggered, and the physician should be informed via an alert box to strengthen the monitoring of relevant indicators. Clinical pharmacists need to conduct in-depth training on knowledge related to gefitinib drug interactions in key clinical departments such as respiratory medicine. They should strengthen the monitoring and guidance of rational drug use for patients who are on long-term gefitinib therapy, and promptly identify and intervene in PK-pADIs, thereby enhancing the rationality, safety, and effectiveness of clinical drug use.
9.Assessment of perioperative pulmonary fluid volume using remote dielectric sensing (ReDSTM) non-invasive lung fluid measurement technology in transcatheter tricuspid valve-in-valve implantation: The first case report
Yuliang LONG ; Yuan ZHANG ; Xiaochun ZHANG ; Peng WANG ; Xiaotong CUI ; Wenzhi PAN ; Daxin ZHOU ; Junbo GE
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):571-574
One of its primary surgical treatments of tricuspid regurgitation is tricuspid valve biological valve replacement. Catheter tricuspid valve-in-valve implantation is a novel interventional alternative for biological valve failure. The non-invasive lung fluid measuring device remote dielectric sensing (ReDSTM) has been increasingly incorporated into clinical practice as a means of monitoring chronic heart failure in recent years. This report describes the process and outcomes of the first instance of perioperative lung fluid volume evaluation following transcatheter tricuspid valve implantation utilizing ReDSTM technology. The patient has a short-term, substantial increase in postoperative lung fluid volume as compared to baseline.
10.The effect of nectin-4/vanin-1 regulatory axis on the development of esophageal squamous carcinoma and the preliminary investigation of the mechanism
LONG Yuanfeng1, 2 ; DENG Yubin1,2 ; YANG Hang1,3 ; ZHANG Ruolan1 ; YANG Mi1 ; SONG Guiqin3 ; LIU Kang1,2
Chinese Journal of Cancer Biotherapy 2025;32(6):594-603
[摘 要] 目的:探究连接蛋白4/泛酸酯酶1轴在食管鳞状细胞癌(ESCC)中的表达和其对ESCC细胞恶性生物学行为的影响及机制。方法:转录组测序结合GO和KEGG富集分析筛选出连接蛋白4调控下游靶基因泛酸酯酶1,用数据库Timer2.0分析泛酸酯酶1 mRNA在ESCC组织中的表达,并用qPCR和WB法检测正常食管上皮细胞HET-1和ESCC细胞中泛酸酯酶1 mRNA和蛋白的表达,筛选出表达差异最为显著的ESCC KYSE-410和KYSE-510细胞。用siRNA敲减KYSE-410和KYSE-510细胞中泛酸酯酶1的表达,用CCK-8法、划痕愈合实验和Transwell小室实验检测敲减泛酸酯酶1表达对细胞增殖、迁移和侵袭的影响。此外,对泛酸酯酶1相关信号通路进行KEGG和GO富集分析,并采用免疫组化法比较泛酸酯酶1在ESCC组织和癌旁组织中的表达差异。结果:Timer2.0数据库数据分析和qPCR法检测结果显示,泛酸酯酶1在ESCC组织和细胞中呈高表达(均P < 0.01)。WB法检测结果显示,泛酸酯酶1蛋白在ESCC细胞中高表达(P < 0.01)。siRNA成功敲减了KYSE-410和KYSE-510细胞中泛酸酯酶1的表达。敲减泛酸酯酶1能显著抑制KYSE-410和KYSE-510细胞的增殖、迁移和侵袭能力(P < 0.05或P < 0.0 1或P < 0.00 1或P < 0.000 1)。KEGG和GO富集分析提示泛酸酯酶1可能通过参与泛酸和辅酶A的合成代谢途径发挥作用。免疫组化法检测结果显示,泛酸酯酶1在ESCC组织中呈高表达(P < 0.000 1)。结论:泛酸酯酶1在ESCC组织中呈高表达,通过连接蛋白4/泛酸酯酶1轴促进KYSE-410和KYSE-510细胞增殖、迁移和侵袭能力。靶向抑制泛酸酯酶1可能为ESCC的治疗提供新的思路。

Result Analysis
Print
Save
E-mail