1.Factors influencing intraocular pressure after femtosecond laser surgery and verification of intraocular pressure correction formulas
Chuanhai ZHOU ; Lijun WANG ; Long WEN ; Haobo FAN ; Zexin YE
International Eye Science 2025;25(3):506-510
AIM: To analyze the factors affecting non-contact intraocular pressure(IOPNCT)measurements after femtosecond laser-assisted small incision lenticule extraction(SMILE), explore the correlation of IOPNCT with central corneal thickness(CCT)and corneal curvature after SMILE, and construct the corresponding regression model which will provide scientific basis for clinical evaluation of the true IOP of patients after SMILE.METHODS: Data from a retrospective analysis of 107 myopic patients(206 eyes)who underwent SMILE and 107 myopic patients(201 eyes)received femtosecond laser-assisted in situ keratomileusis(FS-LASIK)surgery from June 2023 to May 2024 were examined. IOPNCT, CCT, and corneal curvature before surgery and at 1 and 3 mo were collected. The preoperative and postoperative IOPNCT, CCT and corneal curvature were analyzed by ANOVA and Pearson correlation analysis, and multiple linear regression models were constructed to evaluate the association of postoperative changes of IOPNCT, CCT and corneal curvature.RESULTS: There were significant differences in IOPNCT, CCT, and corneal curvature of both SMILE and FS-LASIK patients(all P<0.001), there was no significant difference between two groups and interaction effects(all P>0.05), and the IOPNCT, CCT and corneal curvature at 1 and 3 mo post-surgery were significantly lower than preoperative(all P<0.05). Pearson correlation analysis showed a positive correlation between IOPNCT and CCT at 1 and 3 mo after SMILE(r=0.261, 0.267, all P<0.001), but no significant correlation with corneal curvature(all P>0.05). Multiple linear regression analysis of IOPNCT with CCT and corneal curvature at 1 mo after SMILE indicated that the regression equation was: Y=3.426+0.019X1-0.058X2(Y represents IOPNCT, X1 represents the CCT, and X2 represents the corneal curvature), with statistical significant difference in the equation(F=7.654, P=0.001); the regression equation for 3 mo after surgery was: Y=2.056+0.020X1-0.038 X2(Y represents IOPNCT, X1 represents the CCT, and X2 represents the corneal curvature), with statistically significance in the equation(F=7.903, P<0.001). The regression equation of postoperative IOPNCT change(△IOPNCT)and intraoperative cutting corneal thickness(△CCT)and corneal curvature at 1 mo was Y=-2.252+0.008X1+0.587X2(Y represents △IOPNCT, X1 stands for the △CCT, X2 represents the corneal curvature change value), with statistical significant difference in the equation(F=17.550, P<0.001); the regression equation for 3 mo after surgery was: Y=-2.168+0.024X1+0.281X2(Y represents △IOPNCT, X1 represents △CCT, X2 indicates the corneal curvature change values), with statistical significant difference in the equation(F=16.030, P<0.001).CONCLUSION: After SMILE and FS-LASIK surgery, the IOPNCT value of patients was mainly affected by CCT compared with preoperative surgery, and the short-term use of hormone eye drops, fluorometholone, did not cause a significant increase in IOP; both the IOP correction formula at 1 and 3 mo postoperatively can be used clinically to evaluate and correct actual IOP in patients after SMILE.
2.Factors influencing intraocular pressure after femtosecond laser surgery and verification of intraocular pressure correction formulas
Chuanhai ZHOU ; Lijun WANG ; Long WEN ; Haobo FAN ; Zexin YE
International Eye Science 2025;25(3):506-510
AIM: To analyze the factors affecting non-contact intraocular pressure(IOPNCT)measurements after femtosecond laser-assisted small incision lenticule extraction(SMILE), explore the correlation of IOPNCT with central corneal thickness(CCT)and corneal curvature after SMILE, and construct the corresponding regression model which will provide scientific basis for clinical evaluation of the true IOP of patients after SMILE.METHODS: Data from a retrospective analysis of 107 myopic patients(206 eyes)who underwent SMILE and 107 myopic patients(201 eyes)received femtosecond laser-assisted in situ keratomileusis(FS-LASIK)surgery from June 2023 to May 2024 were examined. IOPNCT, CCT, and corneal curvature before surgery and at 1 and 3 mo were collected. The preoperative and postoperative IOPNCT, CCT and corneal curvature were analyzed by ANOVA and Pearson correlation analysis, and multiple linear regression models were constructed to evaluate the association of postoperative changes of IOPNCT, CCT and corneal curvature.RESULTS: There were significant differences in IOPNCT, CCT, and corneal curvature of both SMILE and FS-LASIK patients(all P<0.001), there was no significant difference between two groups and interaction effects(all P>0.05), and the IOPNCT, CCT and corneal curvature at 1 and 3 mo post-surgery were significantly lower than preoperative(all P<0.05). Pearson correlation analysis showed a positive correlation between IOPNCT and CCT at 1 and 3 mo after SMILE(r=0.261, 0.267, all P<0.001), but no significant correlation with corneal curvature(all P>0.05). Multiple linear regression analysis of IOPNCT with CCT and corneal curvature at 1 mo after SMILE indicated that the regression equation was: Y=3.426+0.019X1-0.058X2(Y represents IOPNCT, X1 represents the CCT, and X2 represents the corneal curvature), with statistical significant difference in the equation(F=7.654, P=0.001); the regression equation for 3 mo after surgery was: Y=2.056+0.020X1-0.038 X2(Y represents IOPNCT, X1 represents the CCT, and X2 represents the corneal curvature), with statistically significance in the equation(F=7.903, P<0.001). The regression equation of postoperative IOPNCT change(△IOPNCT)and intraoperative cutting corneal thickness(△CCT)and corneal curvature at 1 mo was Y=-2.252+0.008X1+0.587X2(Y represents △IOPNCT, X1 stands for the △CCT, X2 represents the corneal curvature change value), with statistical significant difference in the equation(F=17.550, P<0.001); the regression equation for 3 mo after surgery was: Y=-2.168+0.024X1+0.281X2(Y represents △IOPNCT, X1 represents △CCT, X2 indicates the corneal curvature change values), with statistical significant difference in the equation(F=16.030, P<0.001).CONCLUSION: After SMILE and FS-LASIK surgery, the IOPNCT value of patients was mainly affected by CCT compared with preoperative surgery, and the short-term use of hormone eye drops, fluorometholone, did not cause a significant increase in IOP; both the IOP correction formula at 1 and 3 mo postoperatively can be used clinically to evaluate and correct actual IOP in patients after SMILE.
3.Preparation of new hydrogels and their synergistic effects of immunochemotherapy
Wen-wen YAN ; Yan-long ZHANG ; Ming-hui CAO ; Zheng-han LIU ; Hong LEI ; Xiang-qian JIA
Acta Pharmaceutica Sinica 2025;60(2):479-487
In recent years, cancer treatment methods and means are becoming more and more diversified, and single treatment methods often have limited efficacy, while the synergistic effect of immunity combined with chemotherapy can inhibit tumor growth more effectively. Based on this, we constructed a sodium alginate hydrogel composite system loaded with chemotherapeutic agents and tumor vaccines (named SA-DOX-NA) with a view to the combined use of chemotherapeutic agents and tumor vaccines. Firstly, the tumor vaccine (named NA) degradable under acidic conditions was constructed by
4.Effects of honey-processed Astragalus on energy metabolism and polarization of RAW264.7 cells
Hong-chang LI ; Ke PEI ; Wang-yang XIE ; Xiang-long MENG ; Zi-han YU ; Wen-ling LI ; Hao CAI
Acta Pharmaceutica Sinica 2025;60(2):459-470
In this study, RAW264.7 cells were employed to investigate the effects of honey-processed
5.Status of Clinical Practice Guideline Information Platforms
Xueqin ZHANG ; Yun ZHAO ; Jie LIU ; Long GE ; Ying XING ; Simeng REN ; Yifei WANG ; Wenzheng ZHANG ; Di ZHANG ; Shihua WANG ; Yao SUN ; Min WU ; Lin FENG ; Tiancai WEN
Medical Journal of Peking Union Medical College Hospital 2025;16(2):462-471
Clinical practice guidelines represent the best recommendations for patient care. They are developed through systematically reviewing currently available clinical evidence and weighing the relative benefits and risks of various interventions. However, clinical practice guidelines have to go through a long translation cycle from development and revision to clinical promotion and application, facing problems such as scattered distribution, high duplication rate, and low actual utilization. At present, the clinical practice guideline information platform can directly or indirectly solve the problems related to the lengthy revision cycles, decentralized dissemination and limited application of clinical practice guidelines. Therefore, this paper systematically examines different types of clinical practice guideline information platforms and investigates their corresponding challenges and emerging trends in platform design, data integration, and practical implementation, with the aim of clarifying the current status of this field and providing valuable reference for future research on clinical practice guideline information platforms.
6.Feasibility and safety study of ultra-hypofractionated neoadjuvant radiotherapy to margins-at-risk in retroperitoneal sarcoma
Ru-Xin WONG ; Valerie Shi Wen YANG ; Clarame Shulyn CHIA ; Wen Shen LOOI ; Wen Long NEI ; Chin-Ann Johnny ONG
Radiation Oncology Journal 2025;43(1):6-12
Purpose:
Retroperitoneal sarcomas (RPS) are rare tumors that present unique challenges, often due to late presentation, and the proximity of critical organs makes complete surgical resection challenging. This study aimed to assess the feasibility of neoadjuvant short-course radiotherapy (SCRT) targeting margins-at-risk and to assess its potential impact on outcomes.
Materials and Methods:
This is a single-center, prospective, non-randomized feasibility study. SCRT was administered via image-guided volumetric modulated arc therapy, consisting of 5 fractions of daily radiotherapy followed by immediate surgery. As a starting dose, patients were prescribed 25 Gy in 5 fractions. For the escalation stage, patients were prescribed 30 Gy in 5 fractions. Only the presumed threatened surgical margins were delineated for large tumors.
Results:
Patients with either primary or recurrent RPS were recruited. Eight patients underwent SCRT but one patient did not have a resection as planned. Seven patients underwent surgical resection, of whom one passed away 3 months postoperative from a cardiac event. After a median follow-up of 20.5 months for the six postoperative survivors, there were no overt long-term toxicities and one patient relapsed out-of-radiotherapy-field.
Conclusion
SCRT to RPS with a margin boost followed by immediate surgery is worth investigating. A starting dose of 30 Gy in 5 fractions is recommended for further studies. Longer-term follow-up is necessary.
7.Feasibility and safety study of ultra-hypofractionated neoadjuvant radiotherapy to margins-at-risk in retroperitoneal sarcoma
Ru-Xin WONG ; Valerie Shi Wen YANG ; Clarame Shulyn CHIA ; Wen Shen LOOI ; Wen Long NEI ; Chin-Ann Johnny ONG
Radiation Oncology Journal 2025;43(1):6-12
Purpose:
Retroperitoneal sarcomas (RPS) are rare tumors that present unique challenges, often due to late presentation, and the proximity of critical organs makes complete surgical resection challenging. This study aimed to assess the feasibility of neoadjuvant short-course radiotherapy (SCRT) targeting margins-at-risk and to assess its potential impact on outcomes.
Materials and Methods:
This is a single-center, prospective, non-randomized feasibility study. SCRT was administered via image-guided volumetric modulated arc therapy, consisting of 5 fractions of daily radiotherapy followed by immediate surgery. As a starting dose, patients were prescribed 25 Gy in 5 fractions. For the escalation stage, patients were prescribed 30 Gy in 5 fractions. Only the presumed threatened surgical margins were delineated for large tumors.
Results:
Patients with either primary or recurrent RPS were recruited. Eight patients underwent SCRT but one patient did not have a resection as planned. Seven patients underwent surgical resection, of whom one passed away 3 months postoperative from a cardiac event. After a median follow-up of 20.5 months for the six postoperative survivors, there were no overt long-term toxicities and one patient relapsed out-of-radiotherapy-field.
Conclusion
SCRT to RPS with a margin boost followed by immediate surgery is worth investigating. A starting dose of 30 Gy in 5 fractions is recommended for further studies. Longer-term follow-up is necessary.
8.Communication Between Mitochondria and Nucleus With Retrograde Signals
Wen-Long ZHANG ; Lei QUAN ; Yun-Gang ZHAO
Progress in Biochemistry and Biophysics 2025;52(7):1687-1707
Mitochondria, the primary energy-producing organelles of the cell, also serve as signaling hubs and participate in diverse physiological and pathological processes, including apoptosis, inflammation, oxidative stress, neurodegeneration, and tumorigenesis. As semi-autonomous organelles, mitochondrial functionality relies on nuclear support, with mitochondrial biogenesis and homeostasis being stringently regulated by the nuclear genome. This interdependency forms a bidirectional signaling network that coordinates cellular energy metabolism, gene expression, and functional states. During mitochondrial damage or dysfunction, retrograde signals are transmitted to the nucleus, activating adaptive transcriptional programs that modulate nuclear transcription factors, reshape nuclear gene expression, and reprogram cellular metabolism. This mitochondrion-to-nucleus communication, termed “mitochondrial retrograde signaling”, fundamentally represents a mitochondrial “request” to the nucleus to maintain organellar health, rooted in the semi-autonomous nature of mitochondria. Despite possessing their own genome, the “fragmented” mitochondrial genome necessitates reliance on nuclear regulation. This genomic incompleteness enables mitochondria to sense and respond to cellular and environmental stressors, generating signals that modulate the functions of other organelles, including the nucleus. Evolutionary transfer of mitochondrial genes to the nuclear genome has established mitochondrial control over nuclear activities via retrograde communication. When mitochondrial dysfunction or environmental stress compromises cellular demands, mitochondria issue retrograde signals to solicit nuclear support. Studies demonstrate that mitochondrial retrograde signaling pathways operate in pathological contexts such as oxidative stress, electron transport chain (ETC) impairment, apoptosis, autophagy, vascular tension, and inflammatory responses. Mitochondria-related diseases exhibit marked heterogeneity but invariably result in energy deficits, preferentially affecting high-energy-demand tissues like muscles and the nervous system. Consequently, mitochondrial dysfunction underlies myopathies, neurodegenerative disorders, metabolic diseases, and malignancies. Dysregulated retrograde signaling triggers proliferative and metabolic reprogramming, driving pathological cascades. Mitochondrial retrograde signaling critically influences tumorigenesis and progression. Tumor cells with mitochondrial dysfunction exhibit compensatory upregulation of mitochondrial biogenesis, excessive superoxide production, and ETC overload, collectively promoting metastatic tumor development. Recent studies reveal that mitochondrial retrograde signaling—mediated by altered metabolite levels or stress signals—induces epigenetic modifications and is intricately linked to tumor initiation, malignant progression, and therapeutic resistance. For instance, mitochondrial dysfunction promotes oncogenesis through mechanisms such as epigenetic dysregulation, accumulation of mitochondrial metabolic intermediates, and mitochondrial DNA (mtDNA) release, which activates the cytosolic cGAS-STING signaling pathway. In normal cells, miR-663 mediates mitochondrion-to-nucleus retrograde signaling under reactive oxygen species (ROS) regulation. Mitochondria modulate miR-663 promoter methylation, which governs the expression and supercomplex stability of nuclear-encoded oxidative phosphorylation (OXPHOS) subunits and assembly factors. However, dysfunctional mitochondria induce oxidative stress, elevate methyltransferase activity, and cause miR-663 promoter hypermethylation, suppressing miR-663 expression. Mitochondrial dysfunction also triggers retrograde signaling in primary mitochondrial diseases and contributes to neurodegenerative disorders such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). Current therapeutic strategies targeting mitochondria in neurological diseases focus on 5 main approaches: alleviating oxidative stress, inhibiting mitochondrial fission, enhancing mitochondrial biogenesis, mitochondrial protection, and insulin sensitization. In AD patients, mitochondrial morphological abnormalities and enzymatic defects, such as reduced pyruvate dehydrogenase and α-ketoglutarate dehydrogenase activity, are observed. Platelets and brains of AD patients exhibit diminished cytochrome c oxidase (COX) activity, correlating with mitochondrial dysfunction. To model AD-associated mitochondrial pathology, researchers employ cybrid technology, transferring mtDNA from AD patients into enucleated cells. These cybrids recapitulate AD-related mitochondrial phenotypes, including reduced COX activity, elevated ROS production, oxidative stress markers, disrupted calcium homeostasis, activated stress signaling pathways, diminished mitochondrial membrane potential, apoptotic pathway activation, and increased Aβ42 levels. Furthermore, studies indicate that Aβ aggregates in AD and α‑synuclein aggregates in PD trigger mtDNA release from damaged microglial mitochondria, activating the cGAS-STING pathway. This induces a reactive microglial transcriptional state, exacerbating neurodegeneration and cognitive decline. Targeting the cGAS-STING pathway may yield novel therapeutics for neurodegenerative diseases like AD, though translation from bench to bedside remains challenging. Such research not only deepens our understanding of disease mechanisms but also informs future therapeutic strategies. Investigating the triggers, core molecular pathways, and regulatory networks of mitochondrial retrograde signaling advances our comprehension of intracellular communication and unveils novel pathogenic mechanisms underlying malignancies, neurodegenerative diseases, and type 2 diabetes mellitus. This review summarizes established mitochondrial-nuclear retrograde signaling axes, their roles in interorganellar crosstalk, and pathological consequences of dysregulated communication. Targeted modulation of key molecules and proteins within these signaling networks may provide innovative therapeutic avenues for these diseases.
9.Feasibility and safety study of ultra-hypofractionated neoadjuvant radiotherapy to margins-at-risk in retroperitoneal sarcoma
Ru-Xin WONG ; Valerie Shi Wen YANG ; Clarame Shulyn CHIA ; Wen Shen LOOI ; Wen Long NEI ; Chin-Ann Johnny ONG
Radiation Oncology Journal 2025;43(1):6-12
Purpose:
Retroperitoneal sarcomas (RPS) are rare tumors that present unique challenges, often due to late presentation, and the proximity of critical organs makes complete surgical resection challenging. This study aimed to assess the feasibility of neoadjuvant short-course radiotherapy (SCRT) targeting margins-at-risk and to assess its potential impact on outcomes.
Materials and Methods:
This is a single-center, prospective, non-randomized feasibility study. SCRT was administered via image-guided volumetric modulated arc therapy, consisting of 5 fractions of daily radiotherapy followed by immediate surgery. As a starting dose, patients were prescribed 25 Gy in 5 fractions. For the escalation stage, patients were prescribed 30 Gy in 5 fractions. Only the presumed threatened surgical margins were delineated for large tumors.
Results:
Patients with either primary or recurrent RPS were recruited. Eight patients underwent SCRT but one patient did not have a resection as planned. Seven patients underwent surgical resection, of whom one passed away 3 months postoperative from a cardiac event. After a median follow-up of 20.5 months for the six postoperative survivors, there were no overt long-term toxicities and one patient relapsed out-of-radiotherapy-field.
Conclusion
SCRT to RPS with a margin boost followed by immediate surgery is worth investigating. A starting dose of 30 Gy in 5 fractions is recommended for further studies. Longer-term follow-up is necessary.
10.Feasibility and safety study of ultra-hypofractionated neoadjuvant radiotherapy to margins-at-risk in retroperitoneal sarcoma
Ru-Xin WONG ; Valerie Shi Wen YANG ; Clarame Shulyn CHIA ; Wen Shen LOOI ; Wen Long NEI ; Chin-Ann Johnny ONG
Radiation Oncology Journal 2025;43(1):6-12
Purpose:
Retroperitoneal sarcomas (RPS) are rare tumors that present unique challenges, often due to late presentation, and the proximity of critical organs makes complete surgical resection challenging. This study aimed to assess the feasibility of neoadjuvant short-course radiotherapy (SCRT) targeting margins-at-risk and to assess its potential impact on outcomes.
Materials and Methods:
This is a single-center, prospective, non-randomized feasibility study. SCRT was administered via image-guided volumetric modulated arc therapy, consisting of 5 fractions of daily radiotherapy followed by immediate surgery. As a starting dose, patients were prescribed 25 Gy in 5 fractions. For the escalation stage, patients were prescribed 30 Gy in 5 fractions. Only the presumed threatened surgical margins were delineated for large tumors.
Results:
Patients with either primary or recurrent RPS were recruited. Eight patients underwent SCRT but one patient did not have a resection as planned. Seven patients underwent surgical resection, of whom one passed away 3 months postoperative from a cardiac event. After a median follow-up of 20.5 months for the six postoperative survivors, there were no overt long-term toxicities and one patient relapsed out-of-radiotherapy-field.
Conclusion
SCRT to RPS with a margin boost followed by immediate surgery is worth investigating. A starting dose of 30 Gy in 5 fractions is recommended for further studies. Longer-term follow-up is necessary.

Result Analysis
Print
Save
E-mail