1.Proteomics and Network Pharmacology Reveal Mechanism of Xiaoer Huatan Zhike Granules in Treating Allergic Cough
Youqi DU ; Yini XU ; Jiajia LIAO ; Chaowen LONG ; Shidie TAI ; Youwen DU ; Song LI ; Shiquan GAN ; Xiangchun SHEN ; Ling TAO ; Shuying YANG ; Lingyun FU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):69-79
ObjectiveTo explore the pharmacological mechanism involved in the treatment of allergic cough (AC) by Xiaoer Huatan Zhike granules (XEHT) based on proteomics and network pharmacology. MethodsAfter sensitization by intraperitoneal injection of 1 mL suspension containing 2 mg ovalbumin (OVA) and 100 mg aluminum hydroxide, a guinea pig model of allergic cough was constructed by nebulization with 1% OVA. The modeled guinea pigs were randomized into the model, low-, medium- and high-dose (1, 5, 20 g·kg-1, respectively) XEHT, and sodium montelukast (1 mg·kg-1) groups (n=6), and another 6 guinea pigs were selected as the blank group. The guinea pigs in drug administration groups were administrated with the corresponding drugs by gavage, and those in the blank and model groups received the same volume of normal saline by gavage, 1 time·d-1. After 10 consecutive days of drug administration, the guinea pigs were stimulated by 1% OVA nebulization, and the coughs were observed. The pathological changes in the lung tissue were observed by hematoxylin-eosin staining. The enzyme-linked immunosorbent assay was performed to measure the levels of C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), superoxide dismutase (SOD), and malondialdehyde (MDA) in the bronchoalveolar lavage fluid (BALF) and immunoglobulin G (IgG) and immunoglobulin A (IgA) in the serum. Immunohistochemistry (IHC) was employed to observe the expression of IL-6 and TNF-α in the lung tissue. Transmission electron microscopy was employed observe the alveolar type Ⅱ epithelial cell ultrastructure. Real-time PCR was employed to determine the mRNA levels of IL-6, interleukin-1β (IL-1β), and TNF-α in the lung tissue. Label-free proteomics was used to detect the differential proteins among groups. Network pharmacology was used to predict the targets of XEHT in treating AC. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to search for the same pathways from the results of proteomics and network pharmacology. ResultsCompared with the blank group, the model group showed increased coughs (P<0.01), elevated levels of CRP, TNF-α, IL-6, and MDA and lowered level of SOD in the BALF (P<0.05, P<0.01), elevated levels of IgA and IgG in the serum (P<0.05, P<0.01), congestion of the lung tissue and infiltration of inflammatory cells, increased expression of IL-6 and TNF-α (P<0.01), large areas of low electron density edema in type Ⅱ epithelial cells, obvious swelling and vacuolization of the organelles, karyopyknosis or sparse and dissolved chromatin, and up-regulated mRNA levels of IL-6, IL-1β, and TNF-α (P<0.01). Compared with the model group, the drug administration groups showed reduced coughs (P<0.01), lowered levels of CRP, TNF-α, IL-6, and MDA and elevated level of SOD in the BALF (P<0.05, P<0.01), alleviated lung tissue congestion, inflammatory cell infiltration, and type Ⅱ epithelial cell injury, and decreased expression of IL-6 and TNF-α (P<0.01). In addition, the medium-dose XEHT group and the montelukast sodium group showcased lowered serum levels of IgA and IgG (P<0.05, P<0.01). The medium- and high-dose XEHT groups and the montelukast sodium showed down-regulated mRNA levels of IL-6, IL-1β, and TNF-α and the low-dose XEHT group showed down-regulated mRNA levels of IL-6 and TNF-α (P<0.05, P<0.01). Phospholipase D, mammalian target of rapamycin (mTOR), and epidermal growth factor receptor family of receptor tyrosine kinase (ErbB) signaling pathways were the common pathways predicted by both proteomics and network pharmacology. ConclusionProteomics combined with network pharmacology reveal that XEHT can ameliorate AC by regulating the phospholipase D, mTOR, and ErbB signaling pathways.
2.Research on compaction behavior of traditional Chinese medicine compound extract powders based on unsupervised learning
Ying FANG ; Yan-long HONG ; Xiao LIN ; Lan SHEN ; Li-jie ZHAO
Acta Pharmaceutica Sinica 2025;60(2):506-513
Direct compression is an ideal method for tablet preparation, but it requires the powder's high functional properties. The functional properties of the powder during compression directly affect the quality of the tablet. 15 parameters such as Py, FES-8KN,
3.Feasibility and safety study of ultra-hypofractionated neoadjuvant radiotherapy to margins-at-risk in retroperitoneal sarcoma
Ru-Xin WONG ; Valerie Shi Wen YANG ; Clarame Shulyn CHIA ; Wen Shen LOOI ; Wen Long NEI ; Chin-Ann Johnny ONG
Radiation Oncology Journal 2025;43(1):6-12
Purpose:
Retroperitoneal sarcomas (RPS) are rare tumors that present unique challenges, often due to late presentation, and the proximity of critical organs makes complete surgical resection challenging. This study aimed to assess the feasibility of neoadjuvant short-course radiotherapy (SCRT) targeting margins-at-risk and to assess its potential impact on outcomes.
Materials and Methods:
This is a single-center, prospective, non-randomized feasibility study. SCRT was administered via image-guided volumetric modulated arc therapy, consisting of 5 fractions of daily radiotherapy followed by immediate surgery. As a starting dose, patients were prescribed 25 Gy in 5 fractions. For the escalation stage, patients were prescribed 30 Gy in 5 fractions. Only the presumed threatened surgical margins were delineated for large tumors.
Results:
Patients with either primary or recurrent RPS were recruited. Eight patients underwent SCRT but one patient did not have a resection as planned. Seven patients underwent surgical resection, of whom one passed away 3 months postoperative from a cardiac event. After a median follow-up of 20.5 months for the six postoperative survivors, there were no overt long-term toxicities and one patient relapsed out-of-radiotherapy-field.
Conclusion
SCRT to RPS with a margin boost followed by immediate surgery is worth investigating. A starting dose of 30 Gy in 5 fractions is recommended for further studies. Longer-term follow-up is necessary.
4.Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment
Shen CHEN ; Chao XIE ; Xiaoxi LONG ; Xianwei WANG ; Xudong LI ; Peng LIU ; Jiabin LIU ; Zuyong WANG
Tissue Engineering and Regenerative Medicine 2025;22(2):195-210
BACKGROUND:
Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
METHODS:
A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.
RESULTS:
The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.
CONCLUSION
This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.
5.Feasibility and safety study of ultra-hypofractionated neoadjuvant radiotherapy to margins-at-risk in retroperitoneal sarcoma
Ru-Xin WONG ; Valerie Shi Wen YANG ; Clarame Shulyn CHIA ; Wen Shen LOOI ; Wen Long NEI ; Chin-Ann Johnny ONG
Radiation Oncology Journal 2025;43(1):6-12
Purpose:
Retroperitoneal sarcomas (RPS) are rare tumors that present unique challenges, often due to late presentation, and the proximity of critical organs makes complete surgical resection challenging. This study aimed to assess the feasibility of neoadjuvant short-course radiotherapy (SCRT) targeting margins-at-risk and to assess its potential impact on outcomes.
Materials and Methods:
This is a single-center, prospective, non-randomized feasibility study. SCRT was administered via image-guided volumetric modulated arc therapy, consisting of 5 fractions of daily radiotherapy followed by immediate surgery. As a starting dose, patients were prescribed 25 Gy in 5 fractions. For the escalation stage, patients were prescribed 30 Gy in 5 fractions. Only the presumed threatened surgical margins were delineated for large tumors.
Results:
Patients with either primary or recurrent RPS were recruited. Eight patients underwent SCRT but one patient did not have a resection as planned. Seven patients underwent surgical resection, of whom one passed away 3 months postoperative from a cardiac event. After a median follow-up of 20.5 months for the six postoperative survivors, there were no overt long-term toxicities and one patient relapsed out-of-radiotherapy-field.
Conclusion
SCRT to RPS with a margin boost followed by immediate surgery is worth investigating. A starting dose of 30 Gy in 5 fractions is recommended for further studies. Longer-term follow-up is necessary.
6.Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment
Shen CHEN ; Chao XIE ; Xiaoxi LONG ; Xianwei WANG ; Xudong LI ; Peng LIU ; Jiabin LIU ; Zuyong WANG
Tissue Engineering and Regenerative Medicine 2025;22(2):195-210
BACKGROUND:
Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
METHODS:
A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.
RESULTS:
The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.
CONCLUSION
This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.
7.Studies on common irritant components in three different base sources of Polygonati Rhizoma.
Yu-Xin GU ; Hong-Li YU ; Min SHEN ; Xin-Zhi WANG ; Kui-Long WANG ; Jie CAO ; Qian-Lin CHEN ; Yan-Qing XU ; Chang-Li SHEN ; Hao WU
China Journal of Chinese Materia Medica 2025;50(12):3223-3231
To explore the common irritant components in different base sources of Polygonati Rhizoma(PR). A rabbit eye irritation experiment was conducted to compare the irritant effects of raw products of Polygonatum kingianum, P. officinale, and P. multiflorum. The irritant effects of different solvent extraction parts and needle crystals of PR were compared, and the irritant components were screened. The morphology and structure of the purified needle crystal of PR were observed by microscope and scanning electron microscope and characterized by X-ray diffraction. Rabbit eye irritation and mouse abdominal inflammation model were used to evaluate rabbit eye irritation scores, inflammatory mediators, inflammatory factors levels in the peritoneal exudate of mice, with the peritoneal pathological section used as indicators. The inflammatory effect of needle crystals of PR was studied, and the content of calcium oxalate in three kinds of PR was determined by HPLC. The common protein in three kinds of PR was screened and compared by double enzymatic hydrolysis in solution combined with mass spectrometry. The results showed that three kinds of PR raw products had certain irritant effects on rabbit eyes, among which P. kingianum had the strongest irritant effect. There were no obvious irritant effects in the different solvent extraction parts of P. kingianum. Compared with the blank group, the needle crystal of PR had a significant irritant effect on rabbit eyes, and the inflammatory mediators and inflammatory factors in the peritoneal exudate were significantly increased(P<0.05) in a dose-dependent manner. Meanwhile, the peritoneal tissue of mice was damaged with significant inflammatory cell infiltration after intraperitoneal injection of needle crystal, indicating that needle crystal had an inflammatory effect. Microscope and scanning electron microscope observations showed that the needle crystals of PR were slender, with a length of about 100-200 μm and sharp ends. X-ray diffraction analysis showed that the needle crystals of PR were calcium oxalate monohydrate crystals. The results of HPLC showed that the content of calcium oxalate in P. kingianum was the highest among the three kinds of PR. It was speculated that the content of needle crystal in P. kingianum was higher than that in P. officinale and P. multiflorum, which was consistent with the results of the rabbit eye irritation experiment. The results of mass spectrometry showed that ribosome inactivating protein and mannose/sialic acid binding lectin were related to inflammation and cell metabolism in all three kinds of PR. There was no obvious irritant effect in different solvent extracts of PR. The calcium oxalate needle crystal contained was the main irritant component of PR, and three kinds of PR contained common ribosome inactivating protein and mannose/sialic acid binding lectin, which may be related to the inflammatory irritant effect of PR.
Animals
;
Rabbits
;
Mice
;
Polygonatum/chemistry*
;
Drugs, Chinese Herbal/toxicity*
;
Rhizome/chemistry*
;
Male
;
Eye/drug effects*
;
Female
;
Humans
8.Development of oral preparations of poorly soluble drugs based on polymer supersaturated self-nanoemulsifying drug delivery technology.
Xu-Long CHEN ; Jiang-Wen SHEN ; Wei-Wei ZHA ; Jian-Yun YI ; Lin LI ; Zhang-Ting LAI ; Zheng-Gen LIAO ; Ye ZHU ; Yue-Er CHENG ; Cheng LI
China Journal of Chinese Materia Medica 2025;50(16):4471-4482
Poor water solubility is the primary obstacle preventing the development of many pharmacologically active compounds into oral preparations. Self-nanoemulsifying drug delivery systems(SNEDDS) have become a widely used strategy to enhance the oral bioavailability of poorly soluble drugs by inducing a supersaturated state, thereby improving their apparent solubility and dissolution rate. However, the supersaturated solutions formed in SNEDDS are thermodynamically unstable systems with solubility levels exceeding the crystalline equilibrium solubility, making them prone to drug precipitation in the gastrointestinal tract and ultimately hindering drug absorption. Therefore, maintaining a stable supersaturated state is crucial for the effective delivery of poorly soluble drugs. Incorporating polymers as precipitation inhibitors(PPIs) into the formulation of supersaturated self-nanoemulsifying drug delivery systems(S-SNEDDS) can inhibit drug aggregation and crystallization, thus maintaining a stable supersaturated state. This has emerged as a novel preparation strategy and a key focus in SNEDDS research. This review explores the preparation design of SNEDDS and the technical challenges involved, with a particular focus on polymer-based S-SNEDDS for enhancing the solubility and oral bioavailability of poorly soluble drugs. It further elucidates the mechanisms by which polymers participate in transmembrane transport, summarizes the principles by which polymers sustain a supersaturated state, and discusses strategies for enhancing drug absorption. Altogether, this review provides a structured framework for the development of S-SNEDDS preparations with stable quality and reduced development risk, and offers a theoretical reference for the application of S-SNEDDS technology in improving the oral bioavailability of poorly soluble drugs.
Solubility
;
Administration, Oral
;
Polymers/chemistry*
;
Drug Delivery Systems/methods*
;
Humans
;
Emulsions/chemistry*
;
Biological Availability
;
Animals
;
Pharmaceutical Preparations/administration & dosage*
9.NINJ1 impairs the anti-inflammatory function of hUC-MSCs with synergistic IFN-γ and TNF-α stimulation.
Wang HU ; Guomei YANG ; Luoquan AO ; Peixin SHEN ; Mengwei YAO ; Yuchuan YUAN ; Jiaoyue LONG ; Zhan LI ; Xiang XU
Chinese Journal of Traumatology 2025;28(4):276-287
PURPOSE:
To investigate the regulatory role of nerve injury-induced protein 1 (NINJ1) in the anti-inflammatory function of human umbilical cord mesenchymal stem cells (hUC-MSCs) co-stimulated by interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α).
METHODS:
hUC-MSCs were expanded in vitro using standard protocols, with stem cell characteristics confirmed by flow cytometry and multilineage differentiation assays. The immunomodulatory properties and cellular activity of cytokine-co-pretreated hUC-MSCs were systematically evaluated via quantitative reverse transcription RT-qPCR, lymphocyte proliferation suppression assays, and Cell Counting Kit-8 viability tests. Transcriptome sequencing, Western blotting and small interfering RNA interference were integrated to analyze the regulatory mechanisms of NINJ1 expression. Functional roles of NINJ1 in pretreated hUC-MSCs were elucidated through gene silencing combined with lactate dehydrogenase release assays, Annexin V/Propidium Iodide apoptosis analysis, macrophage co-culture models, and cytokine Enzyme-Linked Immunosorbent Assay. Therapeutic efficacy was validated in a cecal ligation and puncture-induced septic mouse model: 80 mice were randomly allocated into 4 experimental groups (n=20/group): sham group (laparotomy without cecal ligation); phosphate-buffered saline-treated group (cecal ligation and puncture (CLP) + 0.1 mL phosphate-buffered saline); hUC-MSCs (small interfering RNA (siRNA)-interferon-gamma and tumor necrosis factor-alpha co-stimulation (IT))-treated group (CLP + hUC-MSCs transfected with scrambled siRNA); and hUC-MSCs (siNINJ1-IT)-treated group (CLP + hUC-MSCs with NINJ1-targeting siRNA).
RESULTS:
hUC-MSCs demonstrated compliance with International Society for Cellular Therapy criteria, confirming their stem cell identity. IFN-γ/TNF-α co-pretreatment enhanced the immunosuppressive capacity of hUC-MSCs, accompanied by the reduction of cellular viability, while concurrently upregulating pro-inflammatory cytokines such as interleukin-6 and interleukin-1β. This co-stimulation significantly elevated NINJ1 expression in hUC-MSCs, whereas genetic silencing of NINJ1 effectively suppressed pro-inflammatory cytokine production and attenuated damage-associated molecular patterns release through inhibition of programmed plasma membrane rupture. Furthermore, the NINJ1 interference potentiated the ability of cytokine-pretreated hUC-MSCs to suppress LPS-induced pro-inflammatory responses in RAW264.7 macrophages. In cecal ligation and puncture-induced sepsis model, NINJ1-silenced hUC-MSCs exhibited enhanced therapeutic efficacy, manifested by reduced systemic inflammation and multi-organ damage.
CONCLUSION
Our findings shed new light on the immunomodulatory functions of cytokine-primed MSCs, offering groundbreaking insights for developing MSC-based therapies against inflammatory diseases via interfering the expression of NINJ1.
Mesenchymal Stem Cells/drug effects*
;
Animals
;
Interferon-gamma/pharmacology*
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Humans
;
Mice
;
Umbilical Cord/cytology*
;
Cells, Cultured
;
Apoptosis
;
Male
10.Predictive value of bpMRI for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L.
Lai DONG ; Rong-Jie SHI ; Jin-Wei SHANG ; Zhi-Yi SHEN ; Kai-Yu ZHANG ; Cheng-Long ZHANG ; Bin YANG ; Tian-Bao HUANG ; Ya-Min WANG ; Rui-Zhe ZHAO ; Wei XIA ; Shang-Qian WANG ; Gong CHENG ; Li-Xin HUA
National Journal of Andrology 2025;31(5):426-431
Objective: The aim of this study is to explore the predictive value of biparametric magnetic resonance imaging(bpMRI)for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L and establish a nomogram. Methods: The imaging data and clinical data of 363 patients undergoing radical prostatectomy and pelvic lymph node dissection in the First Affiliated Hospital of Nanjing Medical University from July 2018 to December 2023 were retrospectively analyzed. Univariate analysis and multivariate logistic regression were used to screen independent risk factors for pelvic lymph node metastasis in prostate cancer, and a nomogram of the clinical prediction model was established. Calibration curves were drawn to evaluate the accuracy of the model. Results: Multivariate logistic regression analysis showed extrocapusular extension (OR=8.08,95%CI=2.62-24.97, P<0.01), enlargement of pelvic lymph nodes (OR=4.45,95%CI=1.16-17.11,P=0.030), and biopsy ISUP grade(OR=1.97,95%CI=1.12-3.46, P=0.018)were independent risk factors for pelvic lymph node metastasis. The C-index of the prediction model was 0.834, which indicated that the model had a good prediction ability. The actual value of the model calibration curve and the prediction probability of the model fitted well, indicating that the model had a good accuracy. Further analysis of DCA curve showed that the model had good clinical application value when the risk threshold ranged from 0.05 to 0.70.Conclusion: For prostate cancer patients with PSA≤20 μg/L, bpMRI has a good predictive value for the pelvic lymph node metastasis of prostate cancer with extrocapusular extension, enlargement of pelvic lymph nodes and ISUP grade≥4.
Humans
;
Male
;
Prostatic Neoplasms/diagnostic imaging*
;
Lymphatic Metastasis
;
Retrospective Studies
;
Nomograms
;
Prostate-Specific Antigen/blood*
;
Lymph Nodes/pathology*
;
Pelvis
;
Predictive Value of Tests
;
Prostatectomy
;
Lymph Node Excision
;
Risk Factors
;
Magnetic Resonance Imaging
;
Logistic Models
;
Middle Aged
;
Aged

Result Analysis
Print
Save
E-mail