1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
3.Introduction to Implementation Science Theories, Models, and Frameworks
Lixin SUN ; Enying GONG ; Yishu LIU ; Dan WU ; Chunyuan LI ; Shiyu LU ; Maoyi TIAN ; Qian LONG ; Dong XU ; Lijing YAN
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1332-1343
Implementation Science is an interdisciplinary field dedicated to systematically studying how to effectively translate evidence-based research findings into practical application and implementation. In the health-related context, it focuses on enhancing the efficiency and quality of healthcare services, thereby facilitating the transition from scientific evidence to real-world practice. This article elaborates on Theories, Models, and Frameworks (TMF) within health-related Implementation Science, clarifying their basic concepts and classifications, and discussing their roles in guiding implementation processes. Furthermore, it reviews and prospects current research from three aspects: the constituent elements of TMF, their practical applications, and future directions. Five representative frameworks are emphasized, including the Consolidated Framework for Implementation Research (CFIR), the Practical Robust Implementation and Sustainability Model (PRISM), the Exploration, Preparation, Implementation, Sustainment (EPIS)framework, the Behavior Change Wheel (BCW), and the Normalization Process Theory (NPT). Additionally, resources such as the Dissemination & Implementation Models Webtool and the T-CaST tool are introduced to assist researchers in selecting appropriate TMFs based on project-specific needs.
4.Research progress on interactions between medicinal plants and microorganisms.
Er-Jun WANG ; Ya-Long ZHANG ; Xiao-Hui MA ; Hua-Qian GONG ; Shao-Yang XI ; Gao-Sen ZHANG ; Ling JIN
China Journal of Chinese Materia Medica 2025;50(12):3267-3280
The interactions between microorganisms and medicinal plants are crucial to the quality improvement of medicinal plants. Medicinal plants attract microorganisms to colonize by secreting specific compounds and provide niche and nutrient support for these microorganisms, with a symbiotic network formed. These microorganisms grow in the rhizosphere, phyllosphere, and endophytic tissues of plants and significantly improve the growth performance and medicinal component accumulation of medicinal plants by promoting nutrient uptake, enhancing disease resistance, and regulating the synthesis of secondary metabolites. Microorganisms are also widely used in the ecological planting of medicinal plants, and the growth conditions of medicinal plants are optimized by simulating the microbial effects in the natural environment. The interactions between microorganisms and medicinal plants not only significantly improve the yield and quality of medicinal plants but also enhance their geoherbalism, which is in line with the concept of green agriculture and eco-friendly development. This study reviewed the research results on the interactions between medicinal plants and microorganisms in recent years and focused on the analysis of the great potential of microorganisms in optimizing the growth environment of medicinal plants, regulating the accumulation of secondary metabolites, inducing systemic resistance, and promoting the ecological planting of medicinal plants. It provides a scientific basis for the research on the interactions between medicinal plants and microorganisms, the research and development of microbial agents, and the application of microorganisms in the ecological planting of medicinal plants and is of great significance for the quality improvement of medicinal plants and the green and sustainable development of TCM resources.
Plants, Medicinal/metabolism*
;
Bacteria/genetics*
;
Symbiosis
5.Studies on the best production mode of traditional Chinese medicine driven by artificial intelligence and its engineering application.
Zheng LI ; Ning-Tao CHENG ; Xiao-Ping ZHAO ; Yi TAO ; Qi-Long XUE ; Xing-Chu GONG ; Yang YU ; Jie-Qiang ZHU ; Yi WANG
China Journal of Chinese Materia Medica 2025;50(12):3197-3203
The traditional Chinese medicine(TCM) industry is a crucial part of China's pharmaceutical sector and plays a strategic role in ensuring public health and promoting economic and social development. In response to the practical demand for high-quality development of the TCM industry, this paper focused on the bottlenecks encountered during the digital and intelligent transformation of TCM production systems. Specifically, it explored technical strategies and methodologies for constructing the best TCM production mode. An innovative artificial intelligence(AI)-centered technical architecture for TCM production was proposed, focusing on key aspects of production management including process modeling, state evaluation, and decision optimization. Furthermore, a series of critical technologies were developed to realize the best TCM production mode. Finally, a novel AI-driven TCM production mode characterized by a closed-loop system of "measurement-modeling-decision-execution" was presented through engineering case studies. This study is expected to provide a technological pathway for developing new quality productive forces within the TCM industry.
Artificial Intelligence
;
Drugs, Chinese Herbal
;
Medicine, Chinese Traditional/methods*
;
Humans
6.The construction and application of a trauma limb salvage map in Shaanxi province.
Meng WANG ; Jian-Min LIU ; Xing-Bo DANG ; Long-Yang MA ; Gong-Liang DU ; Wei HU
Chinese Journal of Traumatology 2025;28(4):235-240
Trauma is an important cause of death in young- and middle-aged people. Trauma is comprehensive and includes many surgical specialties, and the surgical techniques of these specialties have long been mature. To reduce the mortality and disability rate of trauma patients, it is necessary to improve trauma management. Trauma has attracted attention in China and trauma treatment and care developed rapidly in recent years. To decrease traumatic mortality and disability rates, our team is committed to building an efficient trauma system in Shaanxi province and has successfully developed a trauma limb salvage map to address the high rates of amputation and disability in patients with limb injuries. This article elaborates on the construction experience of a trauma limb salvage map and its application details in Shaanxi province of China.
Humans
;
China
;
Limb Salvage/methods*
;
Wounds and Injuries/surgery*
;
Male
;
Extremities/injuries*
;
Adult
;
Amputation, Surgical
;
Middle Aged
;
Female
7.Predictive value of bpMRI for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L.
Lai DONG ; Rong-Jie SHI ; Jin-Wei SHANG ; Zhi-Yi SHEN ; Kai-Yu ZHANG ; Cheng-Long ZHANG ; Bin YANG ; Tian-Bao HUANG ; Ya-Min WANG ; Rui-Zhe ZHAO ; Wei XIA ; Shang-Qian WANG ; Gong CHENG ; Li-Xin HUA
National Journal of Andrology 2025;31(5):426-431
Objective: The aim of this study is to explore the predictive value of biparametric magnetic resonance imaging(bpMRI)for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L and establish a nomogram. Methods: The imaging data and clinical data of 363 patients undergoing radical prostatectomy and pelvic lymph node dissection in the First Affiliated Hospital of Nanjing Medical University from July 2018 to December 2023 were retrospectively analyzed. Univariate analysis and multivariate logistic regression were used to screen independent risk factors for pelvic lymph node metastasis in prostate cancer, and a nomogram of the clinical prediction model was established. Calibration curves were drawn to evaluate the accuracy of the model. Results: Multivariate logistic regression analysis showed extrocapusular extension (OR=8.08,95%CI=2.62-24.97, P<0.01), enlargement of pelvic lymph nodes (OR=4.45,95%CI=1.16-17.11,P=0.030), and biopsy ISUP grade(OR=1.97,95%CI=1.12-3.46, P=0.018)were independent risk factors for pelvic lymph node metastasis. The C-index of the prediction model was 0.834, which indicated that the model had a good prediction ability. The actual value of the model calibration curve and the prediction probability of the model fitted well, indicating that the model had a good accuracy. Further analysis of DCA curve showed that the model had good clinical application value when the risk threshold ranged from 0.05 to 0.70.Conclusion: For prostate cancer patients with PSA≤20 μg/L, bpMRI has a good predictive value for the pelvic lymph node metastasis of prostate cancer with extrocapusular extension, enlargement of pelvic lymph nodes and ISUP grade≥4.
Humans
;
Male
;
Prostatic Neoplasms/diagnostic imaging*
;
Lymphatic Metastasis
;
Retrospective Studies
;
Nomograms
;
Prostate-Specific Antigen/blood*
;
Lymph Nodes/pathology*
;
Pelvis
;
Predictive Value of Tests
;
Prostatectomy
;
Lymph Node Excision
;
Risk Factors
;
Magnetic Resonance Imaging
;
Logistic Models
;
Middle Aged
;
Aged
9.KG-CNNDTI: a knowledge graph-enhanced prediction model for drug-target interactions and application in virtual screening of natural products against Alzheimer's disease.
Chengyuan YUE ; Baiyu CHEN ; Long CHEN ; Le XIONG ; Changda GONG ; Ze WANG ; Guixia LIU ; Weihua LI ; Rui WANG ; Yun TANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1283-1292
Accurate prediction of drug-target interactions (DTIs) plays a pivotal role in drug discovery, facilitating optimization of lead compounds, drug repurposing and elucidation of drug side effects. However, traditional DTI prediction methods are often limited by incomplete biological data and insufficient representation of protein features. In this study, we proposed KG-CNNDTI, a novel knowledge graph-enhanced framework for DTI prediction, which integrates heterogeneous biological information to improve model generalizability and predictive performance. The proposed model utilized protein embeddings derived from a biomedical knowledge graph via the Node2Vec algorithm, which were further enriched with contextualized sequence representations obtained from ProteinBERT. For compound representation, multiple molecular fingerprint schemes alongside the Uni-Mol pre-trained model were evaluated. The fused representations served as inputs to both classical machine learning models and a convolutional neural network-based predictor. Experimental evaluations across benchmark datasets demonstrated that KG-CNNDTI achieved superior performance compared to state-of-the-art methods, particularly in terms of Precision, Recall, F1-Score and area under the precision-recall curve (AUPR). Ablation analysis highlighted the substantial contribution of knowledge graph-derived features. Moreover, KG-CNNDTI was employed for virtual screening of natural products against Alzheimer's disease, resulting in 40 candidate compounds. 5 were supported by literature evidence, among which 3 were further validated in vitro assays.
Alzheimer Disease/drug therapy*
;
Biological Products/therapeutic use*
;
Humans
;
Neural Networks, Computer
;
Machine Learning
;
Drug Discovery/methods*
;
Algorithms
;
Drug Evaluation, Preclinical/methods*
10.Synthesis and evaluation for anti-HCoV-OC43 activity of novel aloperine derivatives with different core structures
Run-ze MENG ; Yue GONG ; Yu-long SHI ; Kun WANG ; Zong-gen PENG ; Dan-qing SONG
Acta Pharmaceutica Sinica 2024;59(2):404-412
In this study, we designed and synthesized 12 novel aloperine derivatives with different core structures. Among them, compound

Result Analysis
Print
Save
E-mail